| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , , , , , ⊢  |
| : , : , :  |
1 | reference | 4 | ⊢  |
2 | instantiation | 4, 5, 6 | , , , , , , , , ⊢  |
| : , : , :  |
3 | instantiation | 16, 7, 8, 77, 45, 9, 10 | , , , , , , , , ⊢  |
| : , : , : , : , :  |
4 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
5 | instantiation | 16, 11, 12, 121, 13, 14, 15 | , , , , , , , , ⊢  |
| : , : , : , : , :  |
6 | instantiation | 16, 17, 18, 114, 35, 19 | , , , , , , , , ⊢  |
| : , : , : , : , :  |
7 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat5 |
8 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
9 | instantiation | 119 | ⊢  |
| : , :  |
10 | instantiation | 100, 20, 21 | , , , , , , , ⊢  |
| : , : , :  |
11 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat7 |
12 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
13 | instantiation | 22 | ⊢  |
| : , : , : , : , : , : , :  |
14 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
15 | instantiation | 100, 23, 24 | , , , , , , , ⊢  |
| : , : , :  |
16 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_pulling_scalar_out_front |
17 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat6 |
18 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
19 | instantiation | 100, 25, 26 | , , , , , , , ⊢  |
| : , : , :  |
20 | instantiation | 31, 27, 33 | , , , , , , , ⊢  |
| : , :  |
21 | instantiation | 110, 34, 28 | ⊢  |
| : , : , :  |
22 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_7_typical_eq |
23 | instantiation | 31, 29, 33 | , , , , , , , ⊢  |
| : , :  |
24 | instantiation | 110, 34, 30 | ⊢  |
| : , : , :  |
25 | instantiation | 31, 32, 33 | , , , , , , , ⊢  |
| : , :  |
26 | instantiation | 110, 34, 35 | ⊢  |
| : , : , :  |
27 | instantiation | 100, 36, 37 | , , , , , , , ⊢  |
| : , : , :  |
28 | instantiation | 43 | ⊢  |
| : , : , : , : , : , :  |
29 | instantiation | 100, 38, 39 | , , , , , , , ⊢  |
| : , : , :  |
30 | instantiation | 43 | ⊢  |
| : , : , : , : , : , :  |
31 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_complex_left_closure |
32 | instantiation | 100, 40, 41 | , , , , , , , ⊢  |
| : , : , :  |
33 | instantiation | 42, 125, 126 | , ⊢  |
| : , :  |
34 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat6 |
35 | instantiation | 43 | ⊢  |
| : , : , : , : , : , :  |
36 | instantiation | 58, 96, 122, 44, 60 | , , , , , , , ⊢  |
| : , : , : , :  |
37 | instantiation | 110, 49, 45 | ⊢  |
| : , : , :  |
38 | instantiation | 113, 46, 122, 114 | , , , , , , , ⊢  |
| : , : , :  |
39 | instantiation | 110, 49, 47 | ⊢  |
| : , : , :  |
40 | instantiation | 58, 96, 122, 48, 60 | , , , , , , , ⊢  |
| : , : , : , :  |
41 | instantiation | 110, 49, 50 | ⊢  |
| : , : , :  |
42 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_bra_in_QmultCodomain |
43 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_6_typical_eq |
44 | instantiation | 117, 96, 122, 51 | , , , , , , ⊢  |
| : , : , :  |
45 | instantiation | 55 | ⊢  |
| : , : , : , : , :  |
46 | instantiation | 100, 52, 53 | , , , , , , ⊢  |
| : , : , :  |
47 | instantiation | 55 | ⊢  |
| : , : , : , : , :  |
48 | instantiation | 117, 96, 122, 54 | , , , , , , ⊢  |
| : , : , :  |
49 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat5 |
50 | instantiation | 55 | ⊢  |
| : , : , : , : , :  |
51 | instantiation | 100, 56, 57 | , , , , , , ⊢  |
| : , : , :  |
52 | instantiation | 58, 96, 122, 59, 60 | , , , , , , ⊢  |
| : , : , : , :  |
53 | instantiation | 110, 68, 61 | ⊢  |
| : , : , :  |
54 | instantiation | 100, 62, 63 | , , , , , , ⊢  |
| : , : , :  |
55 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
56 | instantiation | 95, 96, 125, 122, 64, 98 | , , , , , , ⊢  |
| : , : , : , : , :  |
57 | instantiation | 110, 68, 65 | ⊢  |
| : , : , :  |
58 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_op_ket_is_ket |
59 | instantiation | 117, 96, 122, 66 | , , , , , ⊢  |
| : , : , :  |
60 | assumption | | ⊢  |
61 | instantiation | 74 | ⊢  |
| : , : , : , :  |
62 | instantiation | 115, 77, 96, 122, 67 | , , , , , , ⊢  |
| : , : , : , :  |
63 | instantiation | 110, 68, 69 | ⊢  |
| : , : , :  |
64 | instantiation | 117, 125, 122, 70 | , , , , ⊢  |
| : , : , :  |
65 | instantiation | 74 | ⊢  |
| : , : , : , :  |
66 | instantiation | 100, 71, 72 | , , , , , ⊢  |
| : , : , :  |
67 | instantiation | 117, 96, 122, 73 | , , , , , ⊢  |
| : , : , :  |
68 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat4 |
69 | instantiation | 74 | ⊢  |
| : , : , : , :  |
70 | instantiation | 100, 75, 76 | , , , , ⊢  |
| : , : , :  |
71 | instantiation | 115, 77, 96, 122, 78 | , , , , , ⊢  |
| : , : , : , :  |
72 | instantiation | 110, 86, 79 | ⊢  |
| : , : , :  |
73 | instantiation | 100, 80, 81 | , , , , , ⊢  |
| : , : , :  |
74 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
75 | instantiation | 115, 116, 125, 122, 82 | , , , , ⊢  |
| : , : , : , :  |
76 | instantiation | 110, 86, 83 | ⊢  |
| : , : , :  |
77 | assumption | | ⊢  |
78 | instantiation | 117, 96, 122, 84 | , , , , ⊢  |
| : , : , :  |
79 | instantiation | 92 | ⊢  |
| : , : , :  |
80 | instantiation | 95, 96, 125, 122, 85, 98 | , , , , , ⊢  |
| : , : , : , : , :  |
81 | instantiation | 110, 86, 87 | ⊢  |
| : , : , :  |
82 | instantiation | 117, 125, 122, 88 | , , , ⊢  |
| : , : , :  |
83 | instantiation | 92 | ⊢  |
| : , : , :  |
84 | instantiation | 100, 89, 90 | , , , , ⊢  |
| : , : , :  |
85 | instantiation | 117, 125, 122, 91 | , , , ⊢  |
| : , : , :  |
86 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
87 | instantiation | 92 | ⊢  |
| : , : , :  |
88 | instantiation | 100, 93, 94 | , , , ⊢  |
| : , : , :  |
89 | instantiation | 95, 96, 125, 122, 97, 98 | , , , , ⊢  |
| : , : , : , : , :  |
90 | instantiation | 110, 111, 99 | ⊢  |
| : , : , :  |
91 | instantiation | 100, 101, 102 | , , , ⊢  |
| : , : , :  |
92 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
93 | instantiation | 120, 103, 125, 122, 123 | , , , ⊢  |
| : , : , : , :  |
94 | instantiation | 110, 111, 104 | ⊢  |
| : , : , :  |
95 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
96 | instantiation | 127, 107 | ⊢  |
| :  |
97 | instantiation | 117, 125, 122, 105 | , , ⊢  |
| : , : , :  |
98 | instantiation | 106, 128, 107, 108 | , , ⊢  |
| : , : , :  |
99 | instantiation | 119 | ⊢  |
| : , :  |
100 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
101 | instantiation | 115, 116, 125, 122, 109 | , , , ⊢  |
| : , : , : , :  |
102 | instantiation | 110, 111, 112 | ⊢  |
| : , : , :  |
103 | instantiation | 113, 114, 122, 121 | , ⊢  |
| : , : , :  |
104 | instantiation | 119 | ⊢  |
| : , :  |
105 | instantiation | 115, 116, 125, 122, 123 | , , ⊢  |
| : , : , : , :  |
106 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
107 | assumption | | ⊢  |
108 | assumption | | ⊢  |
109 | instantiation | 117, 125, 122, 118 | , , ⊢  |
| : , : , :  |
110 | axiom | | ⊢  |
| proveit.physics.quantum.algebra.multi_qmult_def |
111 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
112 | instantiation | 119 | ⊢  |
| : , :  |
113 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_complex_ket_closure |
114 | assumption | | ⊢  |
115 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_op_complex_closure |
116 | assumption | | ⊢  |
117 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
118 | instantiation | 120, 121, 125, 122, 123 | , , ⊢  |
| : , : , : , :  |
119 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
120 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_complex_op_closure |
121 | assumption | | ⊢  |
122 | theorem | | ⊢  |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
123 | instantiation | 124, 125, 126 | , ⊢  |
| : , :  |
124 | theorem | | ⊢  |
| proveit.physics.quantum.algebra.qmult_bra_is_linmap |
125 | instantiation | 127, 128 | ⊢  |
| :  |
126 | assumption | | ⊢  |
127 | theorem | | ⊢  |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
128 | assumption | | ⊢  |