logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, Conditional, ExprTuple, Function, Lambda
from proveit.linear_algebra import Hspace
from proveit.logic import Equals, InSet
from proveit.physics.quantum import Qmult, var_ket_psi
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(var_ket_psi, Conditional(Equals(Qmult(A, var_ket_psi), Function(Qmult(A), [var_ket_psi])), InSet(var_ket_psi, Hspace))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\lvert \psi \rangle \mapsto \left\{\left(A \thinspace \lvert \psi \rangle\right) = \left[A\right]\left(\lvert \psi \rangle\right) \textrm{ if } \lvert \psi \rangle \in \mathcal{H}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 17
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple17, 11
9Operationoperator: 15
operands: 12
10Operationoperator: 13
operand: 17
11Variable
12ExprTuple18, 17
13Operationoperator: 15
operand: 18
14ExprTuple17
15Literal
16ExprTuple18
17Variable
18Variable