logo

Expression of type InSet

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, X, Y
from proveit.linear_algebra import Hspace, LinMap
from proveit.logic import InSet, Set
from proveit.numbers import Complex
from proveit.physics.quantum import Qmult, QmultCodomain
In [2]:
# build up the expression from sub-expressions
sub_expr1 = LinMap(Hspace, X)
expr = InSet([Qmult(A), Qmult(B)], Set([sub_expr1, Hspace], [X, LinMap(Hspace, Complex)], [LinMap(X, Y), sub_expr1], [Complex, QmultCodomain], [QmultCodomain, Complex]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left[A\right], \left[B\right]\right) \in \left\{\left(\mathcal{L}\left(\mathcal{H}, X\right), \mathcal{H}\right), \left(X, \mathcal{L}\left(\mathcal{H}, \mathbb{C}\right)\right), \left(\mathcal{L}\left(X, Y\right), \mathcal{L}\left(\mathcal{H}, X\right)\right), \left(\mathbb{C}, \mathcal{Q^*}\right), \left(\mathcal{Q^*}, \mathbb{C}\right)\right\}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3ExprTuple5, 6
4Operationoperator: 7
operands: 8
5Operationoperator: 10
operand: 17
6Operationoperator: 10
operand: 18
7Literal
8ExprTuple12, 13, 14, 15, 16
9ExprTuple17
10Literal
11ExprTuple18
12ExprTuple21, 29
13ExprTuple30, 19
14ExprTuple20, 21
15ExprTuple27, 22
16ExprTuple22, 27
17Variable
18Variable
19Operationoperator: 25
operands: 23
20Operationoperator: 25
operands: 24
21Operationoperator: 25
operands: 26
22Literal
23ExprTuple29, 27
24ExprTuple30, 28
25Literal
26ExprTuple29, 30
27Literal
28Variable
29Variable
30Variable