logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, X, c
from proveit.linear_algebra import ScalarMult
from proveit.logic import Equals, InClass
from proveit.physics.quantum import Qmult, QmultCodomain
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(X, Conditional(Equals(Qmult(X, c), ScalarMult(c, X)), InClass(X, QmultCodomain))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(X \mapsto \left\{\left(X \thinspace c\right) = \left(c \cdot X\right) \textrm{ if } X \underset{{\scriptscriptstyle c}}{\in} \mathcal{Q^*}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 18
body: 3
2ExprTuple18
3Conditionalvalue: 4
condition: 5
4Operationoperator: 6
operands: 7
5Operationoperator: 8
operands: 9
6Literal
7ExprTuple10, 11
8Literal
9ExprTuple18, 12
10Operationoperator: 13
operands: 14
11Operationoperator: 15
operands: 16
12Literal
13Literal
14ExprTuple18, 17
15Literal
16ExprTuple17, 18
17Variable
18Variable