# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(t, one)
sub_expr3 = Add(t, s)
sub_expr4 = Interval(sub_expr2, sub_expr3)
sub_expr5 = MultiQubitElem(element = Gate(operation = QPE(U, t), part = sub_expr1), targets = Interval(one, sub_expr3))
expr = ExprTuple(Lambda(U, Conditional(Forall(instance_param_or_params = [var_ket_u], instance_expr = Forall(instance_param_or_params = [phase], instance_expr = greater(Prob(Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, Input(state = ket_plus), one, t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = var_ket_u, part = sub_expr1), targets = sub_expr4), one, s)], [ExprRange(sub_expr1, sub_expr5, one, t), ExprRange(sub_expr1, sub_expr5, sub_expr2, sub_expr3)], [ExprRange(sub_expr1, Measure(basis = Z), one, t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, s)], [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = NumKet(Mod(Round(Mult(two_pow_t, phase)), two_pow_t), t), part = sub_expr1), targets = Interval(one, t)), one, t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = var_ket_u, part = sub_expr1), targets = sub_expr4), one, s)]))), frac(four, Exp(pi, two))), domain = Real, conditions = [InSet(phase, IntervalCO(zero, one)), Equals(MatrixMult(U, var_ket_u), ScalarMult(Exp(e, Mult(two, pi, i, phase)), var_ket_u))]).with_wrapping(), domain = s_ket_domain, condition = normalized_var_ket_u).with_wrapping(), InSet(U, Unitary(two_pow_s)))))