logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Exp, Mult, frac, one, subtract, two
from proveit.physics.quantum.QPE import _n, _t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(frac(one, Mult(two, subtract(Exp(two, subtract(_t, _n)), one))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{1}{2 \cdot \left(2^{t - n} - 1\right)}\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple16, 4
4Operationoperator: 5
operands: 6
5Literal
6ExprTuple14, 7
7Operationoperator: 17
operands: 8
8ExprTuple9, 10
9Operationoperator: 11
operands: 12
10Operationoperator: 21
operand: 16
11Literal
12ExprTuple14, 15
13ExprTuple16
14Literal
15Operationoperator: 17
operands: 18
16Literal
17Literal
18ExprTuple19, 20
19Literal
20Operationoperator: 21
operand: 23
21Literal
22ExprTuple23
23Literal