logo

Expression of type Lambda

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, e
from proveit.logic import InSet
from proveit.numbers import Real
from proveit.physics.quantum.QPE import Pfail, _e_domain
In [2]:
# build up the expression from sub-expressions
expr = Lambda(e, Conditional(InSet(Pfail(e), Real), InSet(e, _e_domain)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
e \mapsto \left\{\left[P_{\rm fail}\right]\left(e\right) \in \mathbb{R} \textrm{ if } e \in \{1~\ldotp \ldotp~2^{t - 1} - 2\}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 14
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 5
operands: 4
3Operationoperator: 5
operands: 6
4ExprTuple7, 8
5Literal
6ExprTuple14, 9
7Operationoperator: 10
operand: 14
8Literal
9Operationoperator: 12
operands: 13
10Literal
11ExprTuple14
12Literal
13ExprTuple30, 15
14Variable
15Operationoperator: 24
operands: 16
16ExprTuple17, 18
17Operationoperator: 19
operands: 20
18Operationoperator: 28
operand: 23
19Literal
20ExprTuple23, 22
21ExprTuple23
22Operationoperator: 24
operands: 25
23Literal
24Literal
25ExprTuple26, 27
26Literal
27Operationoperator: 28
operand: 30
28Literal
29ExprTuple30
30Literal