logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, l
from proveit.numbers import Integer, frac, subtract
from proveit.physics.quantum.QPE import _delta_b, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(subtract(_delta_b, frac(l, _two_pow_t)), Integer)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\delta_{b} - \frac{l}{2^{t}}, \mathbb{Z}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2Literal
3Literal
4ExprTuple5, 6
5Operationoperator: 7
operand: 11
6Operationoperator: 9
operand: 12
7Literal
8ExprTuple11
9Literal
10ExprTuple12
11Variable
12Operationoperator: 13
operands: 14
13Literal
14ExprTuple15, 16
15Variable
16Operationoperator: 17
operands: 18
17Literal
18ExprTuple19, 20
19Literal
20Literal