logo

Expression of type Lambda

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, b
from proveit.logic import Equals, InSet, NotInSet, Or, Set
from proveit.numbers import Integer, zero
from proveit.physics.quantum.QPE import _b_floor, _b_round, _delta_b
In [2]:
# build up the expression from sub-expressions
expr = Lambda(b, Conditional(Or(Equals(_delta_b, zero), NotInSet(_delta_b, Integer)), InSet(b, Set(_b_floor, _b_round))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
b \mapsto \left\{\left(\delta_{b} = 0\right) \lor \left(\delta_{b} \notin \mathbb{Z}\right) \textrm{ if } b \in \left\{b_{\textit{f}}, b_{\textit{r}}\right\}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 24
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple8, 9
6Literal
7ExprTuple24, 10
8Operationoperator: 11
operands: 12
9Operationoperator: 13
operands: 14
10Operationoperator: 15
operands: 16
11Literal
12ExprTuple18, 17
13Literal
14ExprTuple18, 19
15Literal
16ExprTuple20, 21
17Literal
18Operationoperator: 22
operand: 24
19Literal
20Literal
21Literal
22Literal
23ExprTuple24
24Variable