logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, k, t
from proveit.linear_algebra import ScalarMult, VecSum
from proveit.numbers import Exp, Interval, Mult, e, frac, i, one, pi, subtract, two, zero
from proveit.physics.quantum import NumKet
from proveit.physics.quantum.QPE import _phase, _psi_t_ket, two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(_psi_t_ket, ScalarMult(frac(one, Exp(two, frac(t, two))), VecSum(index_or_indices = [k], summand = ScalarMult(Exp(e, Mult(two, pi, i, _phase, k)), NumKet(k, t)), domain = Interval(zero, subtract(two_pow_t, one)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\lvert \psi_{t} \rangle, \frac{1}{2^{\frac{t}{2}}} \cdot \left(\sum_{k=0}^{2^{t} - 1} \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \varphi \cdot k} \cdot \lvert k \rangle_{t}\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operand: 52
2Operationoperator: 21
operands: 5
3Literal
4ExprTuple52
5ExprTuple6, 7
6Operationoperator: 19
operands: 8
7Operationoperator: 9
operand: 12
8ExprTuple53, 11
9Literal
10ExprTuple12
11Operationoperator: 47
operands: 13
12Lambdaparameter: 44
body: 15
13ExprTuple51, 16
14ExprTuple44
15Conditionalvalue: 17
condition: 18
16Operationoperator: 19
operands: 20
17Operationoperator: 21
operands: 22
18Operationoperator: 23
operands: 24
19Literal
20ExprTuple52, 51
21Literal
22ExprTuple25, 26
23Literal
24ExprTuple44, 27
25Operationoperator: 47
operands: 28
26Operationoperator: 29
operands: 30
27Operationoperator: 31
operands: 32
28ExprTuple33, 34
29Literal
30ExprTuple44, 52
31Literal
32ExprTuple35, 36
33Literal
34Operationoperator: 37
operands: 38
35Literal
36Operationoperator: 39
operands: 40
37Literal
38ExprTuple51, 41, 42, 43, 44
39Literal
40ExprTuple45, 46
41Literal
42Literal
43Literal
44Variable
45Operationoperator: 47
operands: 48
46Operationoperator: 49
operand: 53
47Literal
48ExprTuple51, 52
49Literal
50ExprTuple53
51Literal
52Variable
53Literal