logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, U
from proveit.linear_algebra import MatrixMult, ScalarMult
from proveit.logic import Equals, InSet
from proveit.numbers import Exp, Interval, Mult, Real, e, i, one, pi, subtract, two, zero
from proveit.physics.quantum import var_ket_u
from proveit.physics.quantum.QPE import phase, two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(InSet(phase, Real), InSet(Mult(two_pow_t, phase), Interval(zero, subtract(two_pow_t, one))), Equals(MatrixMult(U, var_ket_u), ScalarMult(Exp(e, Mult(two, pi, i, phase)), var_ket_u)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\varphi \in \mathbb{R}, \left(2^{t} \cdot \varphi\right) \in \{0~\ldotp \ldotp~2^{t} - 1\}, \left(U \thinspace \lvert u \rangle\right) = \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \varphi} \cdot \lvert u \rangle\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2, 3
1Operationoperator: 5
operands: 4
2Operationoperator: 5
operands: 6
3Operationoperator: 7
operands: 8
4ExprTuple44, 9
5Literal
6ExprTuple10, 11
7Literal
8ExprTuple12, 13
9Literal
10Operationoperator: 37
operands: 14
11Operationoperator: 15
operands: 16
12Operationoperator: 17
operands: 18
13Operationoperator: 19
operands: 20
14ExprTuple29, 44
15Literal
16ExprTuple21, 22
17Literal
18ExprTuple23, 25
19Literal
20ExprTuple24, 25
21Literal
22Operationoperator: 26
operands: 27
23Variable
24Operationoperator: 33
operands: 28
25Variable
26Literal
27ExprTuple29, 30
28ExprTuple31, 32
29Operationoperator: 33
operands: 34
30Operationoperator: 35
operand: 40
31Literal
32Operationoperator: 37
operands: 38
33Literal
34ExprTuple41, 39
35Literal
36ExprTuple40
37Literal
38ExprTuple41, 42, 43, 44
39Variable
40Literal
41Literal
42Literal
43Literal
44Variable