logo

Expression of type NamedExprs

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import NamedExprs, U, Variable
from proveit.linear_algebra import MatrixExp
from proveit.numbers import Exp, Neg, two
In [2]:
# build up the expression from sub-expressions
expr = NamedExprs(("operation", MatrixExp(U, Exp(two, Neg(Variable("_b", latex_format = r"{_{-}b}"))))), ("part", Variable("_a", latex_format = r"{_{-}a}")))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{ \begin{array}{l}
{\rm operation}: U^{2^{-{_{-}b}}}\\
{\rm part}: {_{-}a}\\
\end{array} \right\}

In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0NamedExprsoperation: 1
part: 2
1Operationoperator: 3
operands: 4
2Variable
3Literal
4ExprTuple5, 6
5Variable
6Operationoperator: 7
operands: 8
7Literal
8ExprTuple9, 10
9Literal
10Operationoperator: 11
operand: 13
11Literal
12ExprTuple13
13Variable