logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Add, Ceil, Log, Mult, frac, one, two
from proveit.physics.quantum.QPE import _eps, _n
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(_n, Ceil(Log(two, Add(two, frac(one, Mult(two, _eps))))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(n, \left\lceil \textrm{log}_2\left(2 + \frac{1}{2 \cdot \epsilon}\right)\right\rceil\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Literal
2Operationoperator: 3
operand: 5
3Literal
4ExprTuple5
5Operationoperator: 6
operands: 7
6Literal
7ExprTuple18, 8
8Operationoperator: 9
operands: 10
9Literal
10ExprTuple18, 11
11Operationoperator: 12
operands: 13
12Literal
13ExprTuple14, 15
14Literal
15Operationoperator: 16
operands: 17
16Literal
17ExprTuple18, 19
18Literal
19Literal