logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, b
from proveit.logic import Equals, InSet
from proveit.numbers import Integer, frac, subtract
from proveit.physics.quantum.QPE import _delta_b, _phase, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(b, Conditional(Equals(_delta_b, subtract(_phase, frac(b, _two_pow_t))), InSet(b, Integer))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(b \mapsto \left\{\delta_{b} = \left(\varphi - \frac{b}{2^{t}}\right) \textrm{ if } b \in \mathbb{Z}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 23
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple23, 11
9Operationoperator: 12
operand: 23
10Operationoperator: 14
operands: 15
11Literal
12Literal
13ExprTuple23
14Literal
15ExprTuple16, 17
16Literal
17Operationoperator: 18
operand: 20
18Literal
19ExprTuple20
20Operationoperator: 21
operands: 22
21Literal
22ExprTuple23, 24
23Variable
24Operationoperator: 25
operands: 26
25Literal
26ExprTuple27, 28
27Literal
28Literal