import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, U, Variable, VertExprArray, s, t
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import I
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import QPE, QPE1
from proveit.physics.quantum.circuits import Gate, MultiQubitElem, Qcircuit
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(t, s)
sub_expr3 = Add(t, one)
sub_expr4 = Interval(one, sub_expr2)
sub_expr5 = MultiQubitElem(element = Gate(operation = QPE(U, t), part = sub_expr1), targets = sub_expr4)
sub_expr6 = MultiQubitElem(element = Gate(operation = QPE1(U, t), part = sub_expr1), targets = sub_expr4)
expr = ExprTuple(Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, sub_expr5, one, t), ExprRange(sub_expr1, sub_expr5, sub_expr3, sub_expr2)])), Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, sub_expr6, one, t), ExprRange(sub_expr1, sub_expr6, sub_expr3, sub_expr2)], [ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(t), part = sub_expr1), targets = Interval(one, t)), one, t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, s)])))
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
stored_expr.style_options()
# display the expression information
stored_expr.expr_info()