logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Lambda, Variable, n
from proveit.core_expr_types import Len
from proveit.logic import Equals
from proveit.numbers import Add, Interval, eight, one
from proveit.physics.quantum import I, NumKet, Z, ket_plus
from proveit.physics.quantum.QPE import QPE, _U, _ket_u, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, Measure, MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
sub_expr3 = Interval(Add(_t, one), sub_expr2)
sub_expr4 = Lambda(sub_expr1, MultiQubitElem(element = Gate(operation = QPE(_U, _t), part = sub_expr1), targets = Interval(one, sub_expr2)))
expr = Equals(Len(operands = [Lambda(sub_expr1, Input(state = ket_plus)), Lambda(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = sub_expr3)), sub_expr4, sub_expr4, Lambda(sub_expr1, Measure(basis = Z)), Lambda(sub_expr1, Gate(operation = I).with_implicit_representation()), Lambda(sub_expr1, MultiQubitElem(element = Output(state = NumKet(n, _t), part = sub_expr1), targets = Interval(one, _t))), Lambda(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = sub_expr3))]), Len(operands = [ExprRange(sub_expr1, sub_expr1, one, eight)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
|\left({_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~{_{-}a}~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~{_{-}a}~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}\left(U, t\right)~\mbox{part}~{_{-}a}~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \meter 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert n \rangle_{t}~\mbox{part}~{_{-}a}~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~{_{-}a}~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right)| = |\left(1, 2, \ldots, 8\right)|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9, 10, 10, 11, 12, 13, 14
6Literal
7ExprTuple15
8Lambdaparameter: 61
body: 16
9Lambdaparameter: 61
body: 17
10Lambdaparameter: 61
body: 18
11Lambdaparameter: 61
body: 19
12Lambdaparameter: 61
body: 20
13Lambdaparameter: 61
body: 21
14Lambdaparameter: 61
body: 22
15ExprRangelambda_map: 23
start_index: 73
end_index: 24
16Operationoperator: 47
operands: 25
17Operationoperator: 32
operands: 26
18Operationoperator: 32
operands: 27
19Operationoperator: 28
operands: 29
20Operationoperator: 48
operands: 30
21Operationoperator: 32
operands: 31
22Operationoperator: 32
operands: 33
23Lambdaparameter: 61
body: 61
24Literal
25NamedExprsstate: 35
26NamedExprselement: 36
targets: 44
27NamedExprselement: 37
targets: 38
28Literal
29NamedExprsbasis: 39
30NamedExprsoperation: 40
31NamedExprselement: 41
targets: 42
32Literal
33NamedExprselement: 43
targets: 44
34ExprTuple61
35Operationoperator: 45
operand: 57
36Operationoperator: 47
operands: 54
37Operationoperator: 48
operands: 49
38Operationoperator: 55
operands: 50
39Literal
40Literal
41Operationoperator: 53
operands: 51
42Operationoperator: 55
operands: 52
43Operationoperator: 53
operands: 54
44Operationoperator: 55
operands: 56
45Literal
46ExprTuple57
47Literal
48Literal
49NamedExprsoperation: 58
part: 61
50ExprTuple73, 63
51NamedExprsstate: 59
part: 61
52ExprTuple73, 74
53Literal
54NamedExprsstate: 60
part: 61
55Literal
56ExprTuple62, 63
57Literal
58Operationoperator: 64
operands: 65
59Operationoperator: 66
operands: 67
60Literal
61Variable
62Operationoperator: 69
operands: 68
63Operationoperator: 69
operands: 70
64Literal
65ExprTuple71, 74
66Literal
67ExprTuple72, 74
68ExprTuple74, 73
69Literal
70ExprTuple74, 75
71Literal
72Variable
73Literal
74Literal
75Literal