logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, t
from proveit.linear_algebra import ScalarMult, VecAdd
from proveit.logic import Equals
from proveit.numbers import Add, Exp, Interval, Mult, Neg, e, frac, i, one, pi, sqrt, two, zero
from proveit.physics.quantum import ket0, ket1
from proveit.physics.quantum.QPE import _ket_u, _phase, _s
from proveit.physics.quantum.circuits import MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Neg(t)
sub_expr3 = Add(sub_expr2, one)
sub_expr4 = frac(one, sqrt(two))
sub_expr5 = ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(Add(t, one), Add(t, _s))), one, _s).with_wrapping_at(2,6)
sub_expr6 = Output(state = ScalarMult(sub_expr4, VecAdd(ket0, ScalarMult(Exp(e, Mult(two, pi, i, Exp(two, Neg(sub_expr1)), _phase)), ket1))))
expr = Equals([Output(state = ScalarMult(sub_expr4, VecAdd(ket0, ScalarMult(Exp(e, Mult(two, pi, i, Exp(two, Neg(sub_expr3)), _phase)), ket1)))), ExprRange(sub_expr1, sub_expr6, Add(sub_expr2, two), zero).with_decreasing_order(), sub_expr5], [ExprRange(sub_expr1, sub_expr6, sub_expr3, zero).with_decreasing_order(), sub_expr5]).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{-\left(-t + 1\right)} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{t - 2} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{t - 3} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{0} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right) =  \\ \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{t - 1} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{t - 2} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{0} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3ExprTuple5, 6, 8
4ExprTuple7, 8
5Operationoperator: 27
operands: 9
6ExprRangelambda_map: 11
start_index: 10
end_index: 55
7ExprRangelambda_map: 11
start_index: 78
end_index: 55
8ExprRangelambda_map: 12
start_index: 85
end_index: 47
9NamedExprsstate: 13
10Operationoperator: 81
operands: 14
11Lambdaparameter: 86
body: 15
12Lambdaparameter: 86
body: 16
13Operationoperator: 51
operands: 17
14ExprTuple84, 79
15Operationoperator: 27
operands: 18
16Operationoperator: 19
operands: 20
17ExprTuple32, 21
18NamedExprsstate: 22
19Literal
20NamedExprselement: 23
targets: 24
21Operationoperator: 39
operands: 25
22Operationoperator: 51
operands: 26
23Operationoperator: 27
operands: 28
24Operationoperator: 29
operands: 30
25ExprTuple45, 31
26ExprTuple32, 33
27Literal
28NamedExprsstate: 34
part: 86
29Literal
30ExprTuple35, 36
31Operationoperator: 51
operands: 37
32Operationoperator: 59
operands: 38
33Operationoperator: 39
operands: 40
34Literal
35Operationoperator: 81
operands: 41
36Operationoperator: 81
operands: 42
37ExprTuple43, 57
38ExprTuple85, 44
39Literal
40ExprTuple45, 46
41ExprTuple89, 85
42ExprTuple89, 47
43Operationoperator: 76
operands: 48
44Operationoperator: 76
operands: 49
45Operationoperator: 62
operand: 55
46Operationoperator: 51
operands: 52
47Literal
48ExprTuple65, 53
49ExprTuple79, 54
50ExprTuple55
51Literal
52ExprTuple56, 57
53Operationoperator: 68
operands: 58
54Operationoperator: 59
operands: 60
55Literal
56Operationoperator: 76
operands: 61
57Operationoperator: 62
operand: 85
58ExprTuple79, 71, 72, 64, 74
59Literal
60ExprTuple85, 79
61ExprTuple65, 66
62Literal
63ExprTuple85
64Operationoperator: 76
operands: 67
65Literal
66Operationoperator: 68
operands: 69
67ExprTuple79, 70
68Literal
69ExprTuple79, 71, 72, 73, 74
70Operationoperator: 87
operand: 78
71Literal
72Literal
73Operationoperator: 76
operands: 77
74Literal
75ExprTuple78
76Literal
77ExprTuple79, 80
78Operationoperator: 81
operands: 82
79Literal
80Operationoperator: 87
operand: 86
81Literal
82ExprTuple84, 85
83ExprTuple86
84Operationoperator: 87
operand: 89
85Literal
86Variable
87Literal
88ExprTuple89
89Variable