logo

Expression of type Qcircuit

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, VertExprArray, t
from proveit.linear_algebra import ScalarMult, VecAdd
from proveit.numbers import Add, Exp, Interval, Mult, Neg, e, frac, i, one, pi, sqrt, two, zero
from proveit.physics.quantum import ket0, ket1, ket_plus
from proveit.physics.quantum.QPE import QPE1, _U, _ket_u, _phase, _s
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output, Qcircuit
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(t, one)
sub_expr3 = Add(t, _s)
sub_expr4 = Interval(sub_expr2, sub_expr3)
sub_expr5 = MultiQubitElem(element = Gate(operation = QPE1(_U, t), part = sub_expr1), targets = Interval(one, sub_expr3))
expr = Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, Input(state = ket_plus), one, t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = sub_expr4), one, _s)], [ExprRange(sub_expr1, sub_expr5, one, t), ExprRange(sub_expr1, sub_expr5, sub_expr2, sub_expr3)], [ExprRange(sub_expr1, Output(state = ScalarMult(frac(one, sqrt(two)), VecAdd(ket0, ScalarMult(Exp(e, Mult(two, pi, i, Exp(two, Neg(sub_expr1)), _phase)), ket1)))), Add(Neg(t), one), zero).with_decreasing_order(), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = sub_expr4), one, _s)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{\lvert + \rangle} & \multigate{4}{\textrm{QPE}_1\left(U, t\right)} & \qout{\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{t - 1} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \qout{\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{t - 2} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)} \\
\qin{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \qout{\vdots} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \qout{\frac{1}{\sqrt{2}} \cdot \left(\lvert 0 \rangle + \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot 2^{0} \cdot \varphi} \cdot \lvert 1 \rangle\right)\right)} \\
\qin{\lvert u \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \qout{\lvert u \rangle}
} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
spacingchange the spacing of a circuit using the format '@C=1em @R=.7em' where C is the column spacing and R is the row spacing@C=1em @R=.7em@C=1em @R=.7em
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4, 5
3ExprTuple6, 7
4ExprTuple8, 9
5ExprTuple10, 11
6ExprRangelambda_map: 12
start_index: 85
end_index: 68
7ExprRangelambda_map: 13
start_index: 85
end_index: 69
8ExprRangelambda_map: 14
start_index: 85
end_index: 68
9ExprRangelambda_map: 14
start_index: 54
end_index: 55
10ExprRangelambda_map: 15
start_index: 16
end_index: 75
11ExprRangelambda_map: 17
start_index: 85
end_index: 69
12Lambdaparameter: 98
body: 18
13Lambdaparameter: 98
body: 19
14Lambdaparameter: 98
body: 20
15Lambdaparameter: 98
body: 21
16Operationoperator: 62
operands: 22
17Lambdaparameter: 98
body: 23
18Operationoperator: 40
operands: 24
19Operationoperator: 29
operands: 25
20Operationoperator: 29
operands: 26
21Operationoperator: 45
operands: 27
22ExprTuple28, 85
23Operationoperator: 29
operands: 30
24NamedExprsstate: 31
25NamedExprselement: 32
targets: 38
26NamedExprselement: 33
targets: 34
27NamedExprsstate: 35
28Operationoperator: 96
operand: 68
29Literal
30NamedExprselement: 37
targets: 38
31Operationoperator: 81
operand: 49
32Operationoperator: 40
operands: 46
33Operationoperator: 41
operands: 42
34Operationoperator: 47
operands: 43
35Operationoperator: 72
operands: 44
36ExprTuple68
37Operationoperator: 45
operands: 46
38Operationoperator: 47
operands: 48
39ExprTuple49
40Literal
41Literal
42NamedExprsoperation: 50
part: 98
43ExprTuple85, 55
44ExprTuple51, 52
45Literal
46NamedExprsstate: 53
part: 98
47Literal
48ExprTuple54, 55
49Literal
50Operationoperator: 56
operands: 57
51Operationoperator: 78
operands: 58
52Operationoperator: 59
operands: 60
53Literal
54Operationoperator: 62
operands: 61
55Operationoperator: 62
operands: 63
56Literal
57ExprTuple64, 68
58ExprTuple85, 65
59Literal
60ExprTuple66, 67
61ExprTuple68, 85
62Literal
63ExprTuple68, 69
64Literal
65Operationoperator: 92
operands: 70
66Operationoperator: 81
operand: 75
67Operationoperator: 72
operands: 73
68Variable
69Literal
70ExprTuple94, 74
71ExprTuple75
72Literal
73ExprTuple76, 77
74Operationoperator: 78
operands: 79
75Literal
76Operationoperator: 92
operands: 80
77Operationoperator: 81
operand: 85
78Literal
79ExprTuple85, 94
80ExprTuple83, 84
81Literal
82ExprTuple85
83Literal
84Operationoperator: 86
operands: 87
85Literal
86Literal
87ExprTuple94, 88, 89, 90, 91
88Literal
89Literal
90Operationoperator: 92
operands: 93
91Literal
92Literal
93ExprTuple94, 95
94Literal
95Operationoperator: 96
operand: 98
96Literal
97ExprTuple98
98Variable