logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, Variable, VertExprArray, m
from proveit.linear_algebra import TensorProd
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import NumKet, Z
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _s, _s_wire, _t
from proveit.physics.quantum.circuits import Input, Measure, MultiQubitElem, Output, Qcircuit, QcircuitEquiv
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Interval(one, _t)
sub_expr3 = Add(_t, one)
sub_expr4 = Add(_t, _s)
sub_expr5 = Interval(sub_expr3, sub_expr4)
sub_expr6 = [ExprRange(sub_expr1, Measure(basis = Z), one, _t), _s_wire]
sub_expr7 = MultiQubitElem(element = Input(state = TensorProd(_Psi_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr4))
sub_expr8 = [ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _Psi_ket, part = sub_expr1), targets = sub_expr2), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = sub_expr5), one, _s)]
sub_expr9 = [ExprRange(sub_expr1, sub_expr7, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr7, sub_expr3, sub_expr4).with_wrapping_at(2,6)]
sub_expr10 = [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = NumKet(m, _t), part = sub_expr1), targets = sub_expr2), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = sub_expr5), one, _s)]
expr = ExprTuple(QcircuitEquiv(Qcircuit(vert_expr_array = VertExprArray(sub_expr8)), Qcircuit(vert_expr_array = VertExprArray(sub_expr9))), QcircuitEquiv(Qcircuit(vert_expr_array = VertExprArray(sub_expr8, sub_expr6, sub_expr10)), Qcircuit(vert_expr_array = VertExprArray(sub_expr9, sub_expr6, sub_expr10))).with_wrapping_at(1))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{\lvert \Psi \rangle} & { /^{t} } \qw \\
\qin{\lvert u \rangle} & { /^{s} } \qw
} \end{array}\right) \cong \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\multiqin{1}{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & { /^{t} } \qw \\
\ghostqin{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & { /^{s} } \qw
} \end{array}\right), \begin{array}{c} \begin{array}{l} \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\multiqin{3}{\lvert \Psi \rangle} & \meter & \multiqout{3}{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \measure{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} \qw & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\qin{\lvert u \rangle} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right) \\  \cong \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\multiqin{4}{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & \meter & \multiqout{3}{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & \measure{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} \qw & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle {\otimes} \lvert u \rangle} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right) \end{array} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 7
4Literal
5ExprTuple8, 9
6Operationoperator: 13
operand: 15
7Operationoperator: 13
operand: 16
8Operationoperator: 13
operands: 12
9Operationoperator: 13
operands: 14
10ExprTuple15
11ExprTuple16
12ExprTuple15, 17, 18
13Literal
14ExprTuple16, 17, 18
15ExprTuple19, 20
16ExprTuple21, 22
17ExprTuple23, 24
18ExprTuple25, 26
19ExprRangelambda_map: 27
start_index: 87
end_index: 88
20ExprRangelambda_map: 28
start_index: 87
end_index: 89
21ExprRangelambda_map: 29
start_index: 87
end_index: 88
22ExprRangelambda_map: 29
start_index: 75
end_index: 76
23ExprRangelambda_map: 30
start_index: 87
end_index: 88
24ExprRangelambda_map: 31
start_index: 87
end_index: 89
25ExprRangelambda_map: 32
start_index: 87
end_index: 88
26ExprRangelambda_map: 33
start_index: 87
end_index: 89
27Lambdaparameter: 74
body: 34
28Lambdaparameter: 74
body: 35
29Lambdaparameter: 74
body: 36
30Lambdaparameter: 74
body: 37
31Lambdaparameter: 74
body: 38
32Lambdaparameter: 74
body: 39
33Lambdaparameter: 74
body: 41
34Operationoperator: 50
operands: 42
35Operationoperator: 50
operands: 43
36Operationoperator: 50
operands: 44
37Operationoperator: 45
operands: 46
38Operationoperator: 47
operands: 48
39Operationoperator: 50
operands: 49
40ExprTuple74
41Operationoperator: 50
operands: 51
42NamedExprselement: 52
targets: 59
43NamedExprselement: 53
targets: 61
44NamedExprselement: 54
targets: 55
45Literal
46NamedExprsbasis: 56
47Literal
48NamedExprsoperation: 57
49NamedExprselement: 58
targets: 59
50Literal
51NamedExprselement: 60
targets: 61
52Operationoperator: 63
operands: 62
53Operationoperator: 63
operands: 69
54Operationoperator: 63
operands: 64
55Operationoperator: 70
operands: 65
56Literal
57Literal
58Operationoperator: 68
operands: 66
59Operationoperator: 70
operands: 67
60Operationoperator: 68
operands: 69
61Operationoperator: 70
operands: 71
62NamedExprsstate: 84
part: 74
63Literal
64NamedExprsstate: 72
part: 74
65ExprTuple87, 76
66NamedExprsstate: 73
part: 74
67ExprTuple87, 88
68Literal
69NamedExprsstate: 85
part: 74
70Literal
71ExprTuple75, 76
72Operationoperator: 77
operands: 78
73Operationoperator: 79
operands: 80
74Variable
75Operationoperator: 82
operands: 81
76Operationoperator: 82
operands: 83
77Literal
78ExprTuple84, 85
79Literal
80ExprTuple86, 88
81ExprTuple88, 87
82Literal
83ExprTuple88, 89
84Literal
85Literal
86Variable
87Literal
88Literal
89Literal