logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable, VertExprArray, m
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import NumKet, Z
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _s, _s_wire, _t
from proveit.physics.quantum.circuits import Input, Measure, MultiQubitElem, Output, Qcircuit
from proveit.statistics import Prob
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Interval(one, _t)
sub_expr3 = ExprRange(sub_expr1, Measure(basis = Z), one, _t)
sub_expr4 = Interval(Add(_t, one), Add(_t, _s))
sub_expr5 = ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _Psi_ket, part = sub_expr1), targets = sub_expr2), one, _t)
sub_expr6 = ExprRange(sub_expr1, MultiQubitElem(element = Output(state = NumKet(m, _t), part = sub_expr1), targets = sub_expr2), one, _t)
expr = Equals(Prob(Qcircuit(vert_expr_array = VertExprArray([sub_expr5], [sub_expr3], [sub_expr6]))), Prob(Qcircuit(vert_expr_array = VertExprArray([sub_expr5, ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = sub_expr4), one, _s)], [sub_expr3, _s_wire], [sub_expr6, ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = sub_expr4), one, _s)])))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \textrm{Pr}\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\multiqin{3}{\lvert \Psi \rangle} & \meter & \multiqout{3}{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \measure{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} \qw & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}}
} \end{array}\right) =  \\ \textrm{Pr}\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\multiqin{3}{\lvert \Psi \rangle} & \meter & \multiqout{3}{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \measure{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} \qw & \ghostqout{\lvert m \rangle_{t}} \\
\ghostqin{\lvert \Psi \rangle} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\qin{\lvert u \rangle} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operand: 8
4Operationoperator: 6
operand: 9
5ExprTuple8
6Literal
7ExprTuple9
8Operationoperator: 11
operands: 10
9Operationoperator: 11
operands: 12
10ExprTuple13, 14, 15
11Literal
12ExprTuple16, 17, 18
13ExprTuple19
14ExprTuple21
15ExprTuple23
16ExprTuple19, 20
17ExprTuple21, 22
18ExprTuple23, 24
19ExprRangelambda_map: 25
start_index: 75
end_index: 76
20ExprRangelambda_map: 26
start_index: 75
end_index: 77
21ExprRangelambda_map: 27
start_index: 75
end_index: 76
22ExprRangelambda_map: 28
start_index: 75
end_index: 77
23ExprRangelambda_map: 29
start_index: 75
end_index: 76
24ExprRangelambda_map: 30
start_index: 75
end_index: 77
25Lambdaparameter: 66
body: 31
26Lambdaparameter: 66
body: 32
27Lambdaparameter: 66
body: 33
28Lambdaparameter: 66
body: 34
29Lambdaparameter: 66
body: 35
30Lambdaparameter: 66
body: 37
31Operationoperator: 45
operands: 38
32Operationoperator: 45
operands: 39
33Operationoperator: 40
operands: 41
34Operationoperator: 42
operands: 43
35Operationoperator: 45
operands: 44
36ExprTuple66
37Operationoperator: 45
operands: 46
38NamedExprselement: 47
targets: 52
39NamedExprselement: 48
targets: 54
40Literal
41NamedExprsbasis: 49
42Literal
43NamedExprsoperation: 50
44NamedExprselement: 51
targets: 52
45Literal
46NamedExprselement: 53
targets: 54
47Operationoperator: 56
operands: 55
48Operationoperator: 56
operands: 60
49Literal
50Literal
51Operationoperator: 59
operands: 57
52Operationoperator: 61
operands: 58
53Operationoperator: 59
operands: 60
54Operationoperator: 61
operands: 62
55NamedExprsstate: 63
part: 66
56Literal
57NamedExprsstate: 64
part: 66
58ExprTuple75, 76
59Literal
60NamedExprsstate: 65
part: 66
61Literal
62ExprTuple67, 68
63Literal
64Operationoperator: 69
operands: 70
65Literal
66Variable
67Operationoperator: 72
operands: 71
68Operationoperator: 72
operands: 73
69Literal
70ExprTuple74, 76
71ExprTuple76, 75
72Literal
73ExprTuple76, 77
74Variable
75Literal
76Literal
77Literal