logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , :
1theorem  ⊢  
 proveit.numbers.exponentiation.exp_complex_closure
2instantiation27, 8, 4  ⊢  
  : , : , :
3instantiation5, 6  ⊢  
  :
4instantiation27, 11, 7  ⊢  
  : , : , :
5theorem  ⊢  
 proveit.numbers.negation.complex_closure
6instantiation27, 8, 9  ⊢  
  : , : , :
7instantiation27, 15, 10  ⊢  
  : , : , :
8theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
9instantiation27, 11, 12  ⊢  
  : , : , :
10instantiation27, 13, 14  ⊢  
  : , : , :
11theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
12instantiation27, 15, 17  ⊢  
  : , : , :
13instantiation16, 17, 18  ⊢  
  : , :
14assumption  ⊢  
15theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
16theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
17instantiation27, 28, 19  ⊢  
  : , : , :
18instantiation20, 21, 22  ⊢  
  : , :
19theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
20theorem  ⊢  
 proveit.numbers.addition.add_int_closure_bin
21instantiation27, 23, 24  ⊢  
  : , : , :
22instantiation25, 26  ⊢  
  :
23theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
24theorem  ⊢  
 proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
25theorem  ⊢  
 proveit.numbers.negation.int_closure
26instantiation27, 28, 29  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
28theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
29theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2