logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import e, l
from proveit.logic import Equals
from proveit.numbers import Add, Exp, Interval, Mult, Sum, frac, one, subtract, two
from proveit.physics.quantum.QPE import _two_pow__t_minus_one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = frac(one, Exp(e, two))
sub_expr2 = Sum(index_or_indices = [l], summand = frac(one, Exp(l, two)), domain = Interval(Add(e, one), subtract(_two_pow__t_minus_one, one)))
expr = Equals(Add(sub_expr2, Add(sub_expr1, sub_expr2)), Add(Mult(two, sub_expr2), sub_expr1))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\sum_{l = e + 1}^{2^{t - 1} - 1} \frac{1}{l^{2}}\right) + \left(\frac{1}{e^{2}} + \left(\sum_{l = e + 1}^{2^{t - 1} - 1} \frac{1}{l^{2}}\right)\right)\right) = \left(\left(2 \cdot \left(\sum_{l = e + 1}^{2^{t - 1} - 1} \frac{1}{l^{2}}\right)\right) + \frac{1}{e^{2}}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 44
operands: 5
4Operationoperator: 44
operands: 6
5ExprTuple13, 7
6ExprTuple8, 12
7Operationoperator: 44
operands: 9
8Operationoperator: 10
operands: 11
9ExprTuple12, 13
10Literal
11ExprTuple42, 13
12Operationoperator: 24
operands: 14
13Operationoperator: 15
operand: 18
14ExprTuple50, 17
15Literal
16ExprTuple18
17Operationoperator: 40
operands: 19
18Lambdaparameter: 33
body: 21
19ExprTuple38, 42
20ExprTuple33
21Conditionalvalue: 22
condition: 23
22Operationoperator: 24
operands: 25
23Operationoperator: 26
operands: 27
24Literal
25ExprTuple50, 28
26Literal
27ExprTuple33, 29
28Operationoperator: 40
operands: 30
29Operationoperator: 31
operands: 32
30ExprTuple33, 42
31Literal
32ExprTuple34, 35
33Variable
34Operationoperator: 44
operands: 36
35Operationoperator: 44
operands: 37
36ExprTuple38, 50
37ExprTuple39, 47
38Variable
39Operationoperator: 40
operands: 41
40Literal
41ExprTuple42, 43
42Literal
43Operationoperator: 44
operands: 45
44Literal
45ExprTuple46, 47
46Literal
47Operationoperator: 48
operand: 50
48Literal
49ExprTuple50
50Literal