logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2,  ⊢  
  : , :
1theorem  ⊢  
 proveit.numbers.addition.subtraction.neg_difference
2instantiation32, 3, 4,  ⊢  
  : , : , :
3instantiation5, 6, 7,  ⊢  
  : , : , :
4instantiation8, 9, 10, 11  ⊢  
  : , : , :
5theorem  ⊢  
 proveit.numbers.ordering.transitivity_less_eq_less
6instantiation12, 13, 14, 15,  ⊢  
  : , : , :
7instantiation16, 17  ⊢  
  :
8theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.interval_co_lower_bound
9theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
10instantiation48, 18, 19  ⊢  
  : , : , :
11theorem  ⊢  
 proveit.physics.quantum.QPE._scaled_delta_b_floor_in_interval
12theorem  ⊢  
 proveit.numbers.number_sets.integers.interval_upper_bound
13instantiation41, 20, 37  ⊢  
  : , :
14instantiation46, 21  ⊢  
  :
15assumption  ⊢  
16theorem  ⊢  
 proveit.numbers.number_sets.integers.negative_if_in_neg_int
17instantiation22, 23  ⊢  
  :
18theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
19instantiation48, 24, 37  ⊢  
  : , : , :
20instantiation46, 42  ⊢  
  :
21instantiation41, 29, 37  ⊢  
  : , :
22theorem  ⊢  
 proveit.numbers.negation.int_neg_closure
23instantiation25, 26, 27  ⊢  
  : , :
24theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
25theorem  ⊢  
 proveit.numbers.addition.add_nat_pos_closure_bin
26instantiation28, 29, 30  ⊢  
  :
27theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
28theorem  ⊢  
 proveit.numbers.number_sets.integers.pos_int_is_natural_pos
29instantiation48, 31, 39  ⊢  
  : , : , :
30instantiation32, 33, 34  ⊢  
  : , : , :
31instantiation35, 37, 38  ⊢  
  : , :
32theorem  ⊢  
 proveit.numbers.ordering.transitivity_less_less_eq
33theorem  ⊢  
 proveit.numbers.numerals.decimals.less_0_1
34instantiation36, 37, 38, 39  ⊢  
  : , : , :
35theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
36theorem  ⊢  
 proveit.numbers.number_sets.integers.interval_lower_bound
37instantiation48, 49, 40  ⊢  
  : , : , :
38instantiation41, 42, 43  ⊢  
  : , :
39assumption  ⊢  
40theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
41theorem  ⊢  
 proveit.numbers.addition.add_int_closure_bin
42instantiation48, 44, 45  ⊢  
  : , : , :
43instantiation46, 47  ⊢  
  :
44theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
45theorem  ⊢  
 proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
46theorem  ⊢  
 proveit.numbers.negation.int_closure
47instantiation48, 49, 50  ⊢  
  : , : , :
48theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
49theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
50theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2