logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2  ⊢  
  :
1theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
2instantiation3, 4, 5  ⊢  
  :
3theorem  ⊢  
 proveit.numbers.number_sets.integers.pos_int_is_natural_pos
4instantiation23, 6, 14  ⊢  
  : , : , :
5instantiation7, 8, 9  ⊢  
  : , : , :
6instantiation10, 12, 13  ⊢  
  : , :
7theorem  ⊢  
 proveit.numbers.ordering.transitivity_less_less_eq
8theorem  ⊢  
 proveit.numbers.numerals.decimals.less_0_1
9instantiation11, 12, 13, 14  ⊢  
  : , : , :
10theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
11theorem  ⊢  
 proveit.numbers.number_sets.integers.interval_lower_bound
12instantiation23, 24, 15  ⊢  
  : , : , :
13instantiation16, 17, 18  ⊢  
  : , :
14assumption  ⊢  
15theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
16theorem  ⊢  
 proveit.numbers.addition.add_int_closure_bin
17instantiation23, 19, 20  ⊢  
  : , : , :
18instantiation21, 22  ⊢  
  :
19theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
20theorem  ⊢  
 proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
21theorem  ⊢  
 proveit.numbers.negation.int_closure
22instantiation23, 24, 25  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
24theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
25theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2