logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3,  ⊢  
  : , : , :
1reference27  ⊢  
2theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
3instantiation27, 4, 5,  ⊢  
  : , : , :
4instantiation14, 6, 7  ⊢  
  : , :
5assumption  ⊢  
6instantiation20, 8, 15  ⊢  
  : , :
7instantiation20, 21, 9  ⊢  
  : , :
8instantiation27, 10, 11  ⊢  
  : , : , :
9instantiation27, 12, 13  ⊢  
  : , : , :
10instantiation14, 15, 16  ⊢  
  : , :
11assumption  ⊢  
12theorem  ⊢  
 proveit.numbers.number_sets.integers.neg_int_within_int
13instantiation17, 18  ⊢  
  :
14theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
15instantiation27, 28, 19  ⊢  
  : , : , :
16instantiation20, 21, 22  ⊢  
  : , :
17theorem  ⊢  
 proveit.numbers.negation.int_neg_closure
18theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
19theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
20theorem  ⊢  
 proveit.numbers.addition.add_int_closure_bin
21instantiation27, 23, 24  ⊢  
  : , : , :
22instantiation25, 26  ⊢  
  :
23theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
24theorem  ⊢  
 proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
25theorem  ⊢  
 proveit.numbers.negation.int_closure
26instantiation27, 28, 29  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
28theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
29theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2