logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, e
from proveit.numbers import Exp, Mult, four, frac, one, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Mult(frac(one, two), frac(one, e)), Mult(frac(one, four), frac(one, Exp(e, two))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{1}{2} \cdot \frac{1}{e}, \frac{1}{4} \cdot \frac{1}{e^{2}}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 7
4Literal
5ExprTuple8, 9
6Operationoperator: 13
operands: 10
7Operationoperator: 13
operands: 11
8Operationoperator: 13
operands: 12
9Operationoperator: 13
operands: 14
10ExprTuple16, 21
11ExprTuple16, 20
12ExprTuple16, 15
13Literal
14ExprTuple16, 17
15Literal
16Literal
17Operationoperator: 18
operands: 19
18Literal
19ExprTuple20, 21
20Variable
21Literal