# from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit.numbers import Add, Exp, Mult, Neg, frac, one, two
from proveit.physics.quantum.QPE import _two_pow_t

In [2]:
# build up the expression from sub-expressions
expr = Add(Mult(frac(one, Exp(two, one)), _two_pow_t), Neg(two), one)

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(\frac{1}{2^{1}} \cdot 2^{t}\right) - 2 + 1

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4, 19
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operand: 18
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple18
9Operationoperator: 11
operands: 12
10Operationoperator: 16
operands: 13
11Literal
12ExprTuple19, 14
13ExprTuple18, 15
14Operationoperator: 16
operands: 17
15Literal
16Literal
17ExprTuple18, 19
18Literal
19Literal