from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import e, l
from proveit.numbers import Add, Neg, one, subtract

In [2]:
# build up the expression from sub-expressions

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(-\left(e + 1\right) + 1\right) + \left(e - l\right)

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0Operationoperator: 13
operands: 1
1ExprTuple2, 3
2Operationoperator: 13
operands: 4
3Operationoperator: 13
operands: 5
4ExprTuple6, 16
5ExprTuple15, 7
6Operationoperator: 9
operand: 11
7Operationoperator: 9
operand: 12
8ExprTuple11
9Literal
10ExprTuple12
11Operationoperator: 13
operands: 14
12Variable
13Literal
14ExprTuple15, 16
15Variable
16Literal