# Show the Proof¶

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof

Out[1]:
step typerequirementsstatement
0instantiation1, 2, 3
: , : , :
1reference25
2theorem
proveit.numbers.number_sets.complex_numbers.real_within_complex
3instantiation4, 5, 6
: , :
4theorem
proveit.numbers.multiplication.mult_real_closure_bin
5instantiation25, 8, 7
: , : , :
6instantiation25, 8, 9
: , : , :
7instantiation25, 10, 24
: , : , :
8theorem
proveit.numbers.number_sets.real_numbers.rational_within_real
9instantiation25, 10, 11
: , : , :
10theorem
proveit.numbers.number_sets.rational_numbers.int_within_rational
11instantiation25, 12, 13
: , : , :
12instantiation14, 15, 16
: , :
13assumption
14theorem
proveit.numbers.number_sets.integers.int_interval_within_int
15instantiation25, 26, 17
: , : , :
16instantiation18, 19, 20
: , :
17theorem
proveit.numbers.numerals.decimals.nat1
18theorem
19instantiation25, 21, 22
: , : , :
20instantiation23, 24
:
21theorem
proveit.numbers.number_sets.integers.nat_pos_within_int
22theorem
proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
23theorem
proveit.numbers.negation.int_closure
24instantiation25, 26, 27
: , : , :
25theorem
proveit.logic.sets.inclusion.superset_membership_from_proper_subset
26theorem
proveit.numbers.number_sets.integers.nat_within_int
27theorem
proveit.numbers.numerals.decimals.nat2