Show the Proof¶

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof

Out[1]:
step typerequirementsstatement
0instantiation1, 2
: , : , :
1axiom
proveit.logic.equality.substitution
2instantiation3, 4, 5
: , :
3theorem
proveit.numbers.negation.distribute_neg_through_binary_sum
4instantiation27, 7, 6
: , : , :
5instantiation27, 7, 8
: , : , :
6instantiation27, 10, 9
: , : , :
7theorem
proveit.numbers.number_sets.complex_numbers.real_within_complex
8instantiation27, 10, 11
: , : , :
9instantiation27, 13, 12
: , : , :
10theorem
proveit.numbers.number_sets.real_numbers.rational_within_real
11instantiation27, 13, 17
: , : , :
12instantiation27, 14, 15
: , : , :
13theorem
proveit.numbers.number_sets.rational_numbers.int_within_rational
14instantiation16, 17, 18
: , :
15assumption
16theorem
proveit.numbers.number_sets.integers.int_interval_within_int
17instantiation27, 28, 19
: , : , :
18instantiation20, 21, 22
: , :
19theorem
proveit.numbers.numerals.decimals.nat1
20theorem
21instantiation27, 23, 24
: , : , :
22instantiation25, 26
:
23theorem
proveit.numbers.number_sets.integers.nat_pos_within_int
24theorem
proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
25theorem
proveit.numbers.negation.int_closure
26instantiation27, 28, 29
: , : , :
27theorem
proveit.logic.sets.inclusion.superset_membership_from_proper_subset
28theorem
proveit.numbers.number_sets.integers.nat_within_int
29theorem
proveit.numbers.numerals.decimals.nat2