logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Exp, Mult, frac, one, subtract, two
from proveit.physics.quantum.QPE import _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(subtract(Mult(frac(one, Exp(two, one)), _two_pow_t), one), one)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\frac{1}{2^{1}} \cdot 2^{t}\right) - 1, 1\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 20
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple4, 5
4Operationoperator: 6
operands: 7
5Operationoperator: 8
operand: 20
6Literal
7ExprTuple10, 11
8Literal
9ExprTuple20
10Operationoperator: 12
operands: 13
11Operationoperator: 17
operands: 14
12Literal
13ExprTuple20, 15
14ExprTuple19, 16
15Operationoperator: 17
operands: 18
16Literal
17Literal
18ExprTuple19, 20
19Literal
20Literal