from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Exp, Neg, frac, one, two

In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Exp(two, Neg(one)), frac(one, Exp(two, one)))

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(2^{-1}, \frac{1}{2^{1}}\right)

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 10
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple12, 6
4Literal
5ExprTuple13, 7
6Operationoperator: 8
operand: 13
7Operationoperator: 10
operands: 11
8Literal
9ExprTuple13
10Literal
11ExprTuple12, 13
12Literal
13Literal