import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import k
from proveit.linear_algebra import ScalarMult, VecSum
from proveit.logic import Equals
from proveit.numbers import Exp, Mult, e, frac, i, one, pi, two
from proveit.physics.quantum import NumKet, Qmult
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _m_domain, _phase, _t
# build up the expression from sub-expressions
sub_expr1 = InverseFourierTransform(_t)
sub_expr2 = frac(one, Exp(two, frac(_t, two)))
sub_expr3 = VecSum(index_or_indices = [k], summand = ScalarMult(Exp(e, Mult(two, pi, i, _phase, k)), NumKet(k, _t)), domain = _m_domain)
expr = Equals(Qmult(sub_expr2, sub_expr1, sub_expr3), ScalarMult(sub_expr2, Qmult(sub_expr1, sub_expr3))).with_wrapping_at(2)
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
stored_expr.style_options()
# display the expression information
stored_expr.expr_info()