logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5  ⊢  
  : , : , :
1theorem  ⊢  
 proveit.numbers.exponentiation.real_power_of_real_power
2instantiation28, 6, 7  ⊢  
  : , : , :
3instantiation8, 9  ⊢  
  :
4reference7  ⊢  
5instantiation10, 30  ⊢  
  :
6theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
7instantiation28, 12, 11  ⊢  
  : , : , :
8theorem  ⊢  
 proveit.numbers.negation.real_closure
9instantiation28, 12, 13  ⊢  
  : , : , :
10theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
11instantiation28, 14, 15  ⊢  
  : , : , :
12theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
13instantiation28, 16, 17  ⊢  
  : , : , :
14theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
15instantiation28, 18, 19  ⊢  
  : , : , :
16theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational
17instantiation20, 21, 22  ⊢  
  : , :
18theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
19theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
20theorem  ⊢  
 proveit.numbers.multiplication.mult_rational_pos_closure_bin
21instantiation23, 24, 25  ⊢  
  : , :
22instantiation28, 29, 26  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.numbers.division.div_rational_pos_closure
24instantiation28, 29, 27  ⊢  
  : , : , :
25instantiation28, 29, 30  ⊢  
  : , : , :
26axiom  ⊢  
 proveit.physics.quantum.QPE._t_in_natural_pos
27theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
28theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
29theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos
30theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2