logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, Variable, VertExprArray
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import I, ket_plus
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import QPE1, _Psi_ket, _U, _ket_u, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output, Qcircuit
from proveit.statistics import Prob
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, one)
sub_expr3 = Add(_t, _s)
sub_expr4 = Interval(one, _t)
sub_expr5 = Interval(sub_expr2, sub_expr3)
sub_expr6 = MultiQubitElem(element = Gate(operation = QPE1(_U, _t), part = sub_expr1), targets = Interval(one, sub_expr3))
expr = ExprTuple(Prob(Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, Input(state = ket_plus), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = sub_expr5), one, _s)], [ExprRange(sub_expr1, sub_expr6, one, _t), ExprRange(sub_expr1, sub_expr6, sub_expr2, sub_expr3)], [ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr4), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s)], [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr4), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = sub_expr5), one, _s)]))), one)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\textrm{Pr}\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{\lvert + \rangle} & \multigate{4}{\textrm{QPE}_1\left(U, t\right)} & \multigate{3}{{\mathrm {FT}}^{\dag}_{t}} & \multiqout{3}{\lvert \Psi \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \ghost{{\mathrm {FT}}^{\dag}_{t}} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \ghost{{\mathrm {FT}}^{\dag}_{t}} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & \ghost{{\mathrm {FT}}^{\dag}_{t}} & \ghostqout{\lvert \Psi \rangle} \\
\qin{\lvert u \rangle} & \ghost{\textrm{QPE}_1\left(U, t\right)} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right), 1\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 81
1Operationoperator: 2
operand: 4
2Literal
3ExprTuple4
4Operationoperator: 5
operands: 6
5Literal
6ExprTuple7, 8, 9, 10
7ExprTuple11, 12
8ExprTuple13, 14
9ExprTuple15, 16
10ExprTuple17, 18
11ExprRangelambda_map: 19
start_index: 81
end_index: 82
12ExprRangelambda_map: 20
start_index: 81
end_index: 83
13ExprRangelambda_map: 21
start_index: 81
end_index: 82
14ExprRangelambda_map: 21
start_index: 71
end_index: 72
15ExprRangelambda_map: 22
start_index: 81
end_index: 82
16ExprRangelambda_map: 23
start_index: 81
end_index: 83
17ExprRangelambda_map: 24
start_index: 81
end_index: 82
18ExprRangelambda_map: 25
start_index: 81
end_index: 83
19Lambdaparameter: 70
body: 26
20Lambdaparameter: 70
body: 27
21Lambdaparameter: 70
body: 28
22Lambdaparameter: 70
body: 29
23Lambdaparameter: 70
body: 30
24Lambdaparameter: 70
body: 31
25Lambdaparameter: 70
body: 33
26Operationoperator: 54
operands: 34
27Operationoperator: 40
operands: 35
28Operationoperator: 40
operands: 36
29Operationoperator: 40
operands: 37
30Operationoperator: 57
operands: 38
31Operationoperator: 40
operands: 39
32ExprTuple70
33Operationoperator: 40
operands: 41
34NamedExprsstate: 42
35NamedExprselement: 43
targets: 51
36NamedExprselement: 44
targets: 45
37NamedExprselement: 46
targets: 49
38NamedExprsoperation: 47
39NamedExprselement: 48
targets: 49
40Literal
41NamedExprselement: 50
targets: 51
42Operationoperator: 52
operand: 65
43Operationoperator: 54
operands: 62
44Operationoperator: 57
operands: 55
45Operationoperator: 63
operands: 56
46Operationoperator: 57
operands: 58
47Literal
48Operationoperator: 61
operands: 59
49Operationoperator: 63
operands: 60
50Operationoperator: 61
operands: 62
51Operationoperator: 63
operands: 64
52Literal
53ExprTuple65
54Literal
55NamedExprsoperation: 66
part: 70
56ExprTuple81, 72
57Literal
58NamedExprsoperation: 67
part: 70
59NamedExprsstate: 68
part: 70
60ExprTuple81, 82
61Literal
62NamedExprsstate: 69
part: 70
63Literal
64ExprTuple71, 72
65Literal
66Operationoperator: 73
operands: 74
67Operationoperator: 75
operand: 82
68Literal
69Literal
70Variable
71Operationoperator: 78
operands: 77
72Operationoperator: 78
operands: 79
73Literal
74ExprTuple80, 82
75Literal
76ExprTuple82
77ExprTuple82, 81
78Literal
79ExprTuple82, 83
80Literal
81Literal
82Literal
83Literal