logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable
from proveit.core_expr_types import Len
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one, two
from proveit.physics.quantum import ket_plus
from proveit.physics.quantum.QPE import QPE1, _U, _ket_u, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, one)
sub_expr3 = Add(_t, _s)
sub_expr4 = MultiQubitElem(element = Gate(operation = QPE1(_U, _t), part = sub_expr1), targets = Interval(one, sub_expr3))
expr = Equals(Len(operands = [[ExprRange(sub_expr1, Input(state = ket_plus), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = Interval(sub_expr2, sub_expr3)), one, _s)], [ExprRange(sub_expr1, sub_expr4, one, _t), ExprRange(sub_expr1, sub_expr4, sub_expr2, sub_expr3)]]), Len(operands = [ExprRange(sub_expr1, sub_expr1, one, two)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
|\left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array}, ..\left(t - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert + \rangle} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right), \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right)\right)| = |\left(1, \ldots, 2\right)|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple10
8ExprTuple11, 12
9ExprTuple13, 14
10ExprRangelambda_map: 15
start_index: 53
end_index: 16
11ExprRangelambda_map: 17
start_index: 53
end_index: 55
12ExprRangelambda_map: 18
start_index: 53
end_index: 56
13ExprRangelambda_map: 19
start_index: 53
end_index: 55
14ExprRangelambda_map: 19
start_index: 44
end_index: 47
15Lambdaparameter: 46
body: 46
16Literal
17Lambdaparameter: 46
body: 20
18Lambdaparameter: 46
body: 21
19Lambdaparameter: 46
body: 23
20Operationoperator: 35
operands: 24
21Operationoperator: 26
operands: 25
22ExprTuple46
23Operationoperator: 26
operands: 27
24NamedExprsstate: 28
25NamedExprselement: 29
targets: 30
26Literal
27NamedExprselement: 31
targets: 32
28Operationoperator: 33
operand: 42
29Operationoperator: 35
operands: 36
30Operationoperator: 40
operands: 37
31Operationoperator: 38
operands: 39
32Operationoperator: 40
operands: 41
33Literal
34ExprTuple42
35Literal
36NamedExprsstate: 43
part: 46
37ExprTuple44, 47
38Literal
39NamedExprsoperation: 45
part: 46
40Literal
41ExprTuple53, 47
42Literal
43Literal
44Operationoperator: 51
operands: 48
45Operationoperator: 49
operands: 50
46Variable
47Operationoperator: 51
operands: 52
48ExprTuple55, 53
49Literal
50ExprTuple54, 55
51Literal
52ExprTuple55, 56
53Literal
54Literal
55Literal
56Literal