logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, Variable, VertExprArray
from proveit.linear_algebra import TensorProd
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import I
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _psi__t_ket, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output, Qcircuit
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Interval(one, _t)
sub_expr3 = Add(_t, one)
sub_expr4 = Add(_t, _s)
sub_expr5 = Interval(sub_expr3, sub_expr4)
sub_expr6 = MultiQubitElem(element = Input(state = TensorProd(_psi__t_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr4))
sub_expr7 = [ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr2), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s)]
sub_expr8 = [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr2), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = sub_expr5), one, _s)]
expr = ExprTuple(Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _psi__t_ket, part = sub_expr1), targets = sub_expr2), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Input(state = _ket_u, part = sub_expr1), targets = sub_expr5), one, _s)], sub_expr7, sub_expr8)), Qcircuit(vert_expr_array = VertExprArray([ExprRange(sub_expr1, sub_expr6, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr6, sub_expr3, sub_expr4).with_wrapping_at(2,6)], sub_expr7, sub_expr8)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{\lvert \psi_{t} \rangle} & \gate{{\mathrm {FT}}^{\dag}_{t}} & \qout{\lvert \Psi \rangle} \\
\qin{\lvert u \rangle} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
\multiqin{1}{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle} & \gate{{\mathrm {FT}}^{\dag}_{t}} & \qout{\lvert \Psi \rangle} \\
\ghostqin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 8, 9
4Literal
5ExprTuple7, 8, 9
6ExprTuple10, 11
7ExprTuple12, 13
8ExprTuple14, 15
9ExprTuple16, 17
10ExprRangelambda_map: 18
start_index: 77
end_index: 81
11ExprRangelambda_map: 19
start_index: 77
end_index: 78
12ExprRangelambda_map: 20
start_index: 77
end_index: 81
13ExprRangelambda_map: 20
start_index: 67
end_index: 68
14ExprRangelambda_map: 21
start_index: 77
end_index: 81
15ExprRangelambda_map: 22
start_index: 77
end_index: 78
16ExprRangelambda_map: 23
start_index: 77
end_index: 81
17ExprRangelambda_map: 24
start_index: 77
end_index: 78
18Lambdaparameter: 66
body: 25
19Lambdaparameter: 66
body: 26
20Lambdaparameter: 66
body: 27
21Lambdaparameter: 66
body: 28
22Lambdaparameter: 66
body: 29
23Lambdaparameter: 66
body: 30
24Lambdaparameter: 66
body: 32
25Operationoperator: 39
operands: 33
26Operationoperator: 39
operands: 34
27Operationoperator: 39
operands: 35
28Operationoperator: 39
operands: 36
29Operationoperator: 55
operands: 37
30Operationoperator: 39
operands: 38
31ExprTuple66
32Operationoperator: 39
operands: 40
33NamedExprselement: 41
targets: 48
34NamedExprselement: 42
targets: 50
35NamedExprselement: 43
targets: 44
36NamedExprselement: 45
targets: 48
37NamedExprsoperation: 46
38NamedExprselement: 47
targets: 48
39Literal
40NamedExprselement: 49
targets: 50
41Operationoperator: 52
operands: 51
42Operationoperator: 52
operands: 60
43Operationoperator: 52
operands: 53
44Operationoperator: 61
operands: 54
45Operationoperator: 55
operands: 56
46Literal
47Operationoperator: 59
operands: 57
48Operationoperator: 61
operands: 58
49Operationoperator: 59
operands: 60
50Operationoperator: 61
operands: 62
51NamedExprsstate: 75
part: 66
52Literal
53NamedExprsstate: 63
part: 66
54ExprTuple77, 68
55Literal
56NamedExprsoperation: 64
part: 66
57NamedExprsstate: 65
part: 66
58ExprTuple77, 81
59Literal
60NamedExprsstate: 76
part: 66
61Literal
62ExprTuple67, 68
63Operationoperator: 69
operands: 70
64Operationoperator: 71
operand: 81
65Literal
66Variable
67Operationoperator: 73
operands: 72
68Operationoperator: 73
operands: 74
69Literal
70ExprTuple75, 76
71Literal
72ExprTuple81, 77
73Literal
74ExprTuple81, 78
75Operationoperator: 79
operand: 81
76Literal
77Literal
78Literal
79Literal
80ExprTuple81
81Literal