logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Lambda, Variable
from proveit.core_expr_types import Len
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one, two
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _s, _t
from proveit.physics.quantum.circuits import MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = Equals(Len(operands = [Lambda(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = Interval(one, _t))), Lambda(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(Add(_t, one), Add(_t, _s))))]), Len(operands = [ExprRange(sub_expr1, sub_expr1, one, two)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
|\left({_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~{_{-}a}~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~{_{-}a}~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right)| = |\left(1, \ldots, 2\right)|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple10
8Lambdaparameter: 31
body: 11
9Lambdaparameter: 31
body: 12
10ExprRangelambda_map: 13
start_index: 37
end_index: 14
11Operationoperator: 16
operands: 15
12Operationoperator: 16
operands: 17
13Lambdaparameter: 31
body: 31
14Literal
15NamedExprselement: 19
targets: 20
16Literal
17NamedExprselement: 21
targets: 22
18ExprTuple31
19Operationoperator: 25
operands: 23
20Operationoperator: 27
operands: 24
21Operationoperator: 25
operands: 26
22Operationoperator: 27
operands: 28
23NamedExprsstate: 29
part: 31
24ExprTuple37, 38
25Literal
26NamedExprsstate: 30
part: 31
27Literal
28ExprTuple32, 33
29Literal
30Literal
31Variable
32Operationoperator: 35
operands: 34
33Operationoperator: 35
operands: 36
34ExprTuple38, 37
35Literal
36ExprTuple38, 39
37Literal
38Literal
39Literal