logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable
from proveit.core_expr_types import Len
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one, two
from proveit.physics.quantum import I
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _s, _t
from proveit.physics.quantum.circuits import Gate, MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Interval(one, _t)
expr = Equals(Len(operands = [[ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr2), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s)], [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr2), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(Add(_t, one), Add(_t, _s))), one, _s)]]), Len(operands = [ExprRange(sub_expr1, sub_expr1, one, two)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
|\left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}\right), \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right)\right)| = |\left(1, \ldots, 2\right)|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple10
8ExprTuple11, 12
9ExprTuple13, 14
10ExprRangelambda_map: 15
start_index: 56
end_index: 16
11ExprRangelambda_map: 17
start_index: 56
end_index: 57
12ExprRangelambda_map: 18
start_index: 56
end_index: 58
13ExprRangelambda_map: 19
start_index: 56
end_index: 57
14ExprRangelambda_map: 20
start_index: 56
end_index: 58
15Lambdaparameter: 48
body: 48
16Literal
17Lambdaparameter: 48
body: 21
18Lambdaparameter: 48
body: 22
19Lambdaparameter: 48
body: 23
20Lambdaparameter: 48
body: 25
21Operationoperator: 29
operands: 26
22Operationoperator: 37
operands: 27
23Operationoperator: 29
operands: 28
24ExprTuple48
25Operationoperator: 29
operands: 30
26NamedExprselement: 31
targets: 34
27NamedExprsoperation: 32
28NamedExprselement: 33
targets: 34
29Literal
30NamedExprselement: 35
targets: 36
31Operationoperator: 37
operands: 38
32Literal
33Operationoperator: 41
operands: 39
34Operationoperator: 43
operands: 40
35Operationoperator: 41
operands: 42
36Operationoperator: 43
operands: 44
37Literal
38NamedExprsoperation: 45
part: 48
39NamedExprsstate: 46
part: 48
40ExprTuple56, 57
41Literal
42NamedExprsstate: 47
part: 48
43Literal
44ExprTuple49, 50
45Operationoperator: 51
operand: 57
46Literal
47Literal
48Variable
49Operationoperator: 54
operands: 53
50Operationoperator: 54
operands: 55
51Literal
52ExprTuple57
53ExprTuple57, 56
54Literal
55ExprTuple57, 58
56Literal
57Literal
58Literal