logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Lambda, Variable
from proveit.core_expr_types import Len
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one, six
from proveit.physics.quantum import I
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _psi__t_ket, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
sub_expr3 = Interval(one, _t)
sub_expr4 = Lambda(sub_expr1, MultiQubitElem(element = Input(state = TensorProd(_psi__t_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr2)))
expr = Equals(Len(operands = [sub_expr4, sub_expr4, Lambda(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr3)), Lambda(sub_expr1, Gate(operation = I).with_implicit_representation()), Lambda(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr3)), Lambda(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(Add(_t, one), sub_expr2)))]), Len(operands = [ExprRange(sub_expr1, sub_expr1, one, six)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
|\left({_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~{_{-}a}~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~{_{-}a}~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~{_{-}a}~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~{_{-}a}~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, {_{-}a} \mapsto \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~{_{-}a}~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right)| = |\left(1, 2, \ldots, 6\right)|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 8, 9, 10, 11, 12
6Literal
7ExprTuple13
8Lambdaparameter: 50
body: 14
9Lambdaparameter: 50
body: 15
10Lambdaparameter: 50
body: 16
11Lambdaparameter: 50
body: 17
12Lambdaparameter: 50
body: 18
13ExprRangelambda_map: 19
start_index: 61
end_index: 20
14Operationoperator: 25
operands: 21
15Operationoperator: 25
operands: 22
16Operationoperator: 39
operands: 23
17Operationoperator: 25
operands: 24
18Operationoperator: 25
operands: 26
19Lambdaparameter: 50
body: 50
20Literal
21NamedExprselement: 28
targets: 29
22NamedExprselement: 30
targets: 33
23NamedExprsoperation: 31
24NamedExprselement: 32
targets: 33
25Literal
26NamedExprselement: 34
targets: 35
27ExprTuple50
28Operationoperator: 36
operands: 37
29Operationoperator: 45
operands: 38
30Operationoperator: 39
operands: 40
31Literal
32Operationoperator: 43
operands: 41
33Operationoperator: 45
operands: 42
34Operationoperator: 43
operands: 44
35Operationoperator: 45
operands: 46
36Literal
37NamedExprsstate: 47
part: 50
38ExprTuple61, 52
39Literal
40NamedExprsoperation: 48
part: 50
41NamedExprsstate: 49
part: 50
42ExprTuple61, 65
43Literal
44NamedExprsstate: 60
part: 50
45Literal
46ExprTuple51, 52
47Operationoperator: 53
operands: 54
48Operationoperator: 55
operand: 65
49Literal
50Variable
51Operationoperator: 57
operands: 56
52Operationoperator: 57
operands: 58
53Literal
54ExprTuple59, 60
55Literal
56ExprTuple65, 61
57Literal
58ExprTuple65, 62
59Operationoperator: 63
operand: 65
60Literal
61Literal
62Literal
63Literal
64ExprTuple65
65Literal