logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable
from proveit.core_expr_types import Len
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one, two
from proveit.physics.quantum import I
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import QPE1, _U, _s, _t
from proveit.physics.quantum.circuits import Gate, MultiQubitElem
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
sub_expr3 = MultiQubitElem(element = Gate(operation = QPE1(_U, _t), part = sub_expr1), targets = Interval(one, sub_expr2))
expr = Equals(Len(operands = [[ExprRange(sub_expr1, sub_expr3, one, _t), ExprRange(sub_expr1, sub_expr3, Add(_t, one), sub_expr2)], [ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = Interval(one, _t)), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s)]]), Len(operands = [ExprRange(sub_expr1, sub_expr1, one, two)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
|\left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{\textrm{QPE}_1\left(U, t\right)~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}\right), \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}\right)\right)| = |\left(1, \ldots, 2\right)|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple10
8ExprTuple11, 12
9ExprTuple13, 14
10ExprRangelambda_map: 15
start_index: 45
end_index: 16
11ExprRangelambda_map: 17
start_index: 45
end_index: 54
12ExprRangelambda_map: 17
start_index: 18
end_index: 42
13ExprRangelambda_map: 19
start_index: 45
end_index: 54
14ExprRangelambda_map: 20
start_index: 45
end_index: 53
15Lambdaparameter: 44
body: 44
16Literal
17Lambdaparameter: 44
body: 21
18Operationoperator: 48
operands: 22
19Lambdaparameter: 44
body: 23
20Lambdaparameter: 44
body: 25
21Operationoperator: 27
operands: 26
22ExprTuple54, 45
23Operationoperator: 27
operands: 28
24ExprTuple44
25Operationoperator: 37
operands: 29
26NamedExprselement: 30
targets: 31
27Literal
28NamedExprselement: 32
targets: 33
29NamedExprsoperation: 34
30Operationoperator: 37
operands: 35
31Operationoperator: 39
operands: 36
32Operationoperator: 37
operands: 38
33Operationoperator: 39
operands: 40
34Literal
35NamedExprsoperation: 41
part: 44
36ExprTuple45, 42
37Literal
38NamedExprsoperation: 43
part: 44
39Literal
40ExprTuple45, 54
41Operationoperator: 46
operands: 47
42Operationoperator: 48
operands: 49
43Operationoperator: 50
operand: 54
44Variable
45Literal
46Literal
47ExprTuple52, 54
48Literal
49ExprTuple54, 53
50Literal
51ExprTuple54
52Literal
53Literal
54Literal