logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable
from proveit.core_expr_types import Len
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum.QPE import _ket_u, _psi__t_ket, _s, _t
from proveit.physics.quantum.circuits import MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
expr = Equals(Len(operands = [ExprRange(sub_expr1, MultiQubitElem(element = Output(state = TensorProd(_psi__t_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr2)), one, sub_expr2)]), Len(operands = [ExprRange(sub_expr1, [Variable("_b", latex_format = r"{_{-}b}"), sub_expr1], one, sub_expr2)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
|\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} 
} \end{array}\right)| = |\left(\left({_{-}b}, 1\right), \left({_{-}b}, 2\right), \ldots, \left({_{-}b}, t + s\right)\right)|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8
6Literal
7ExprTuple9
8ExprRangelambda_map: 10
start_index: 26
end_index: 27
9ExprRangelambda_map: 11
start_index: 26
end_index: 27
10Lambdaparameter: 25
body: 12
11Lambdaparameter: 25
body: 14
12Operationoperator: 15
operands: 16
13ExprTuple25
14ExprTuple17, 25
15Literal
16NamedExprselement: 18
targets: 19
17Variable
18Operationoperator: 20
operands: 21
19Operationoperator: 22
operands: 23
20Literal
21NamedExprsstate: 24
part: 25
22Literal
23ExprTuple26, 27
24Operationoperator: 28
operands: 29
25Variable
26Literal
27Operationoperator: 30
operands: 31
28Literal
29ExprTuple32, 33
30Literal
31ExprTuple37, 34
32Operationoperator: 35
operand: 37
33Literal
34Literal
35Literal
36ExprTuple37
37Literal