| step type | requirements | statement |
0 | generalization | 1 | ⊢ |
1 | instantiation | 2, 3 | , , ⊢ |
| : |
2 | modus ponens | 4, 5 | , ⊢ |
3 | assumption | | ⊢ |
4 | instantiation | 6, 7*, 8* | , ⊢ |
| : |
5 | instantiation | 9, 10, 11 | , ⊢ |
| : , : |
6 | conjecture | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.fold_forall_natural |
7 | instantiation | 108, 12, 13 | , ⊢ |
| : , : , : |
8 | instantiation | 108, 14, 15 | ⊢ |
| : , : , : |
9 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
10 | axiom | | ⊢ |
| proveit.logic.booleans.true_axiom |
11 | generalization | 16 | , ⊢ |
12 | instantiation | 17, 178, 18, 132, 19, 20 | , ⊢ |
| : , : , : , : |
13 | instantiation | 21, 125 | ⊢ |
| : |
14 | instantiation | 121, 130, 178, 175, 131, 122, 157, 139 | ⊢ |
| : , : , : , : , : , : |
15 | instantiation | 129, 175, 178, 130, 132, 131, 157, 139, 133* | ⊢ |
| : , : , : , : , : , : |
16 | instantiation | 108, 22, 23 | , , , ⊢ |
| : , : , : |
17 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
18 | instantiation | 143 | ⊢ |
| : , : |
19 | instantiation | 24, 82, 25* | ⊢ |
| : , : |
20 | instantiation | 108, 26, 27 | , ⊢ |
| : , : , : |
21 | axiom | | ⊢ |
| proveit.logic.booleans.eq_true_intro |
22 | instantiation | 59, 28, 29 | , , , ⊢ |
| : , : , : |
23 | instantiation | 70, 30 | , , ⊢ |
| : , : |
24 | axiom | | ⊢ |
| proveit.numbers.summation.sum_single |
25 | instantiation | 31, 151 | ⊢ |
| : |
26 | instantiation | 99, 32 | ⊢ |
| : , : , : |
27 | instantiation | 33, 96, 97 | , ⊢ |
| : |
28 | instantiation | 59, 34, 35 | , , , ⊢ |
| : , : , : |
29 | instantiation | 52, 36, 37, 38, 39* | , , ⊢ |
| : , : , : , : |
30 | instantiation | 59, 40, 41 | , , ⊢ |
| : , : , : |
31 | conjecture | | ⊢ |
| proveit.numbers.exponentiation.exp_zero_eq_one |
32 | instantiation | 99, 42 | ⊢ |
| : , : , : |
33 | conjecture | | ⊢ |
| proveit.numbers.division.frac_cancel_complete |
34 | instantiation | 43, 44, 45 | , , , ⊢ |
| : , : , : |
35 | instantiation | 46, 130, 175, 131, 139, 151, 144, 47*, 48* | , ⊢ |
| : , : , : , : , : , : |
36 | instantiation | 99, 49 | , , ⊢ |
| : , : , : |
37 | instantiation | 99, 50 | , , ⊢ |
| : , : , : |
38 | instantiation | 70, 51 | , , ⊢ |
| : , : |
39 | instantiation | 52, 53, 54, 55 | , ⊢ |
| : , : , : , : |
40 | instantiation | 70, 56 | , , ⊢ |
| : , : |
41 | instantiation | 57, 157, 156 | ⊢ |
| : , : |
42 | instantiation | 99, 58 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
44 | instantiation | 59, 60, 61 | , ⊢ |
| : , : , : |
45 | instantiation | 62, 63, 64, 144, 65*, 66* | , , ⊢ |
| : , : , : |
46 | conjecture | | ⊢ |
| proveit.numbers.multiplication.distribute_through_subtract |
47 | instantiation | 112, 144 | , ⊢ |
| : |
48 | instantiation | 67, 151, 142, 103, 80*, 68* | , ⊢ |
| : , : , : |
49 | instantiation | 70, 69 | , , ⊢ |
| : , : |
50 | instantiation | 70, 71 | , , ⊢ |
| : , : |
51 | instantiation | 72, 175, 178, 130, 73, 131, 74, 111, 113 | , , ⊢ |
| : , : , : , : , : , : |
52 | conjecture | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
53 | instantiation | 121, 130, 178, 175, 131, 75, 139, 134, 113 | , ⊢ |
| : , : , : , : , : , : |
54 | instantiation | 121, 178, 130, 75, 76, 131, 139, 134, 144, 135 | , ⊢ |
| : , : , : , : , : , : |
55 | instantiation | 77, 175, 130, 131, 139, 144, 135 | , ⊢ |
| : , : , : , : , : , : , : , : |
56 | instantiation | 93, 139, 98, 96, 97, 78* | , , ⊢ |
| : , : , : |
57 | conjecture | | ⊢ |
| proveit.numbers.addition.commutation |
58 | instantiation | 108, 79, 80 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
60 | instantiation | 81, 82, 162, 83, 84* | ⊢ |
| : , : , : , : |
61 | assumption | | ⊢ |
62 | conjecture | | ⊢ |
| proveit.numbers.division.frac_cancel_left |
63 | instantiation | 85, 96, 97 | , ⊢ |
| : |
64 | instantiation | 176, 86, 87 | ⊢ |
| : , : , : |
65 | instantiation | 88, 96 | ⊢ |
| : |
66 | instantiation | 89, 144 | , ⊢ |
| : |
67 | conjecture | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
68 | instantiation | 108, 90, 91 | ⊢ |
| : , : , : |
69 | instantiation | 93, 139, 111, 96, 97, 92* | , , ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
71 | instantiation | 93, 139, 113, 96, 97, 94* | , , ⊢ |
| : , : , : |
72 | conjecture | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
73 | instantiation | 143 | ⊢ |
| : , : |
74 | instantiation | 95, 139, 96, 97 | , ⊢ |
| : , : |
75 | instantiation | 143 | ⊢ |
| : , : |
76 | instantiation | 143 | ⊢ |
| : , : |
77 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_general_rev |
78 | instantiation | 112, 98 | , ⊢ |
| : |
79 | instantiation | 99, 100 | ⊢ |
| : , : , : |
80 | instantiation | 101, 151 | ⊢ |
| : |
81 | axiom | | ⊢ |
| proveit.numbers.summation.sum_split_last |
82 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
83 | instantiation | 102, 103 | ⊢ |
| : |
84 | instantiation | 108, 104, 105 | ⊢ |
| : , : , : |
85 | conjecture | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero |
86 | conjecture | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
87 | instantiation | 176, 106, 107 | ⊢ |
| : , : , : |
88 | conjecture | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
89 | conjecture | | ⊢ |
| proveit.numbers.division.frac_one_denom |
90 | instantiation | 121, 175, 178, 130, 122, 131, 139, 157 | ⊢ |
| : , : , : , : , : , : |
91 | instantiation | 108, 109, 110 | ⊢ |
| : , : , : |
92 | instantiation | 112, 111 | , ⊢ |
| : |
93 | conjecture | | ⊢ |
| proveit.numbers.division.mult_frac_left |
94 | instantiation | 112, 113 | , ⊢ |
| : |
95 | conjecture | | ⊢ |
| proveit.numbers.division.div_complex_closure |
96 | instantiation | 155, 139, 114 | ⊢ |
| : , : |
97 | instantiation | 115, 116 | ⊢ |
| : , : |
98 | instantiation | 155, 139, 117 | , ⊢ |
| : , : |
99 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
100 | instantiation | 118, 139 | ⊢ |
| : |
101 | conjecture | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
102 | conjecture | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
103 | instantiation | 119, 175, 130, 131, 174, 120 | ⊢ |
| : , : , : , : , : |
104 | instantiation | 121, 130, 178, 175, 131, 122, 157, 139, 123 | ⊢ |
| : , : , : , : , : , : |
105 | instantiation | 124, 139, 157, 125 | ⊢ |
| : , : , : |
106 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
107 | instantiation | 176, 126, 127 | ⊢ |
| : , : , : |
108 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
109 | instantiation | 128, 175, 130, 131, 139, 157 | ⊢ |
| : , : , : , : , : , : , : |
110 | instantiation | 129, 130, 178, 175, 131, 132, 139, 157, 133* | ⊢ |
| : , : , : , : , : , : |
111 | instantiation | 155, 139, 134 | , ⊢ |
| : , : |
112 | conjecture | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
113 | instantiation | 155, 144, 135 | , ⊢ |
| : , : |
114 | instantiation | 145, 151 | ⊢ |
| : |
115 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.nonzero_difference_if_different |
116 | instantiation | 136, 137 | ⊢ |
| : , : |
117 | instantiation | 145, 138 | , ⊢ |
| : |
118 | conjecture | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
119 | conjecture | | ⊢ |
| proveit.numbers.addition.add_nat_pos_from_nonneg |
120 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
121 | conjecture | | ⊢ |
| proveit.numbers.addition.disassociation |
122 | instantiation | 143 | ⊢ |
| : , : |
123 | instantiation | 145, 139 | ⊢ |
| : |
124 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_23 |
125 | instantiation | 140 | ⊢ |
| : |
126 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
127 | instantiation | 176, 141, 142 | ⊢ |
| : , : , : |
128 | conjecture | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
129 | conjecture | | ⊢ |
| proveit.numbers.addition.association |
130 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
131 | conjecture | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
132 | instantiation | 143 | ⊢ |
| : , : |
133 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
134 | instantiation | 145, 144 | , ⊢ |
| : |
135 | instantiation | 145, 146 | , ⊢ |
| : |
136 | theorem | | ⊢ |
| proveit.logic.equality.not_equals_symmetry |
137 | assumption | | ⊢ |
138 | instantiation | 150, 151, 147 | , ⊢ |
| : , : |
139 | instantiation | 176, 160, 148 | ⊢ |
| : , : , : |
140 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
141 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
142 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
143 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
144 | instantiation | 150, 151, 149 | , ⊢ |
| : , : |
145 | conjecture | | ⊢ |
| proveit.numbers.negation.complex_closure |
146 | instantiation | 150, 151, 152 | , ⊢ |
| : , : |
147 | instantiation | 155, 157, 156 | ⊢ |
| : , : |
148 | instantiation | 176, 163, 153 | ⊢ |
| : , : , : |
149 | instantiation | 176, 160, 154 | ⊢ |
| : , : , : |
150 | conjecture | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
151 | assumption | | ⊢ |
152 | instantiation | 155, 156, 157 | ⊢ |
| : , : |
153 | instantiation | 176, 170, 169 | ⊢ |
| : , : , : |
154 | instantiation | 176, 163, 158 | ⊢ |
| : , : , : |
155 | conjecture | | ⊢ |
| proveit.numbers.addition.add_complex_closure_bin |
156 | instantiation | 176, 160, 159 | ⊢ |
| : , : , : |
157 | instantiation | 176, 160, 161 | ⊢ |
| : , : , : |
158 | instantiation | 176, 170, 162 | ⊢ |
| : , : , : |
159 | instantiation | 176, 163, 164 | ⊢ |
| : , : , : |
160 | conjecture | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
161 | instantiation | 165, 166, 174 | ⊢ |
| : , : , : |
162 | instantiation | 167, 168, 169 | ⊢ |
| : , : |
163 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
164 | instantiation | 176, 170, 171 | ⊢ |
| : , : , : |
165 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
166 | instantiation | 172, 173 | ⊢ |
| : , : |
167 | conjecture | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
168 | instantiation | 176, 177, 174 | ⊢ |
| : , : , : |
169 | instantiation | 176, 177, 175 | ⊢ |
| : , : , : |
170 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
171 | instantiation | 176, 177, 178 | ⊢ |
| : , : , : |
172 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
173 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_within_real |
174 | assumption | | ⊢ |
175 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
176 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
177 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
178 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |