logo

Expression of type Lambda

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Function, Lambda, f, n
from proveit.logic import Equals
from proveit.numbers import Add, Interval, Sum, one, zero
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [n]
expr = Lambda(f, Equals(Sum(index_or_indices = sub_expr1, summand = Function(f, sub_expr1), domain = Interval(zero, one)), Add(Function(f, [zero]), Function(f, [one]))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
f \mapsto \left(\left(\sum_{n = 0}^{1} f\left(n\right)\right) = \left(f\left(0\right) + f\left(1\right)\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 19
body: 2
1ExprTuple19
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Operationoperator: 7
operand: 11
6Operationoperator: 9
operands: 10
7Literal
8ExprTuple11
9Literal
10ExprTuple12, 13
11Lambdaparameter: 23
body: 14
12Operationoperator: 19
operand: 27
13Operationoperator: 19
operand: 28
14Conditionalvalue: 17
condition: 18
15ExprTuple27
16ExprTuple28
17Operationoperator: 19
operand: 23
18Operationoperator: 21
operands: 22
19Variable
20ExprTuple23
21Literal
22ExprTuple23, 24
23Variable
24Operationoperator: 25
operands: 26
25Literal
26ExprTuple27, 28
27Literal
28Literal