logo

Expression of type ExprTuple

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, S, fx, gx, x
from proveit.numbers import Sum
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [x]
expr = ExprTuple(Sum(index_or_indices = sub_expr1, summand = fx, domain = S), Sum(index_or_indices = sub_expr1, summand = gx, domain = S))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{x \in S}~f\left(x\right), \sum_{x \in S}~g\left(x\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operand: 6
2Operationoperator: 4
operand: 7
3ExprTuple6
4Literal
5ExprTuple7
6Lambdaparameter: 18
body: 8
7Lambdaparameter: 18
body: 9
8Conditionalvalue: 10
condition: 12
9Conditionalvalue: 11
condition: 12
10Operationoperator: 13
operand: 18
11Operationoperator: 14
operand: 18
12Operationoperator: 16
operands: 17
13Variable
14Variable
15ExprTuple18
16Literal
17ExprTuple18, 19
18Variable
19Variable