logo

Expression of type Lambda

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, Qx, fx, x
from proveit.logic import InSet
from proveit.numbers import Integer
In [2]:
# build up the expression from sub-expressions
expr = Lambda(x, Conditional(InSet(fx, Integer), Qx))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
x \mapsto \left\{f\left(x\right) \in \mathbb{Z} \textrm{ if } Q\left(x\right)\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 11
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operand: 11
4Literal
5ExprTuple7, 8
6Variable
7Operationoperator: 9
operand: 11
8Literal
9Variable
10ExprTuple11
11Variable