logo

Expression of type ExprTuple

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, c, d, fj, gj, j, x
from proveit.numbers import Interval, Mult, Sum
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(x, Sum(index_or_indices = [j], summand = Mult(gj, fj), domain = Interval(c, d)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x, \sum_{j = c}^{d} \left(g\left(j\right) \cdot f\left(j\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Variable
2Operationoperator: 3
operand: 5
3Literal
4ExprTuple5
5Lambdaparameter: 21
body: 6
6Conditionalvalue: 7
condition: 8
7Operationoperator: 9
operands: 10
8Operationoperator: 11
operands: 12
9Literal
10ExprTuple13, 14
11Literal
12ExprTuple21, 15
13Operationoperator: 16
operand: 21
14Operationoperator: 17
operand: 21
15Operationoperator: 19
operands: 20
16Variable
17Variable
18ExprTuple21
19Literal
20ExprTuple22, 23
21Variable
22Variable
23Variable