logo

Expression of type ExprTuple

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, i
from proveit.numbers import Add, Interval, Sum, one, six, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Add(two, two), Sum(index_or_indices = [i], summand = Add(i, two), domain = Interval(Add(two, one), six)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(2 + 2, \sum_{i = 2 + 1}^{6} \left(i + 2\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 20
operands: 3
2Operationoperator: 4
operand: 6
3ExprTuple22, 22
4Literal
5ExprTuple6
6Lambdaparameter: 14
body: 8
7ExprTuple14
8Conditionalvalue: 9
condition: 10
9Operationoperator: 20
operands: 11
10Operationoperator: 12
operands: 13
11ExprTuple14, 22
12Literal
13ExprTuple14, 15
14Variable
15Operationoperator: 16
operands: 17
16Literal
17ExprTuple18, 19
18Operationoperator: 20
operands: 21
19Literal
20Literal
21ExprTuple22, 23
22Literal
23Literal