logo

Expression of type ExprTuple

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, i
from proveit.numbers import Add, Complex, Interval, Sum, six, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Sum(index_or_indices = [i], summand = Add(i, two), domain = Interval(two, six)), Complex)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{i = 2}^{6} \left(i + 2\right), \mathbb{C}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operand: 5
2Literal
3Literal
4ExprTuple5
5Lambdaparameter: 14
body: 7
6ExprTuple14
7Conditionalvalue: 8
condition: 9
8Operationoperator: 10
operands: 11
9Operationoperator: 12
operands: 13
10Literal
11ExprTuple14, 18
12Literal
13ExprTuple14, 15
14Variable
15Operationoperator: 16
operands: 17
16Literal
17ExprTuple18, 19
18Literal
19Literal