logo

Expression of type ExprTuple

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, a, b, l
from proveit.logic import Equals, InSet
from proveit.numbers import Add, Integer, Mult, one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Add(l, one)
expr = ExprTuple(Lambda(l, Conditional(Equals(Mult(a, b, sub_expr1), Mult(Mult(a, b), sub_expr1)), InSet(l, Integer))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(l \mapsto \left\{\left(a \cdot b \cdot \left(l + 1\right)\right) = \left(\left(a \cdot b\right) \cdot \left(l + 1\right)\right) \textrm{ if } l \in \mathbb{Z}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 23
body: 3
2ExprTuple23
3Conditionalvalue: 4
condition: 5
4Operationoperator: 6
operands: 7
5Operationoperator: 8
operands: 9
6Literal
7ExprTuple10, 11
8Literal
9ExprTuple23, 12
10Operationoperator: 17
operands: 13
11Operationoperator: 17
operands: 14
12Literal
13ExprTuple21, 22, 16
14ExprTuple15, 16
15Operationoperator: 17
operands: 18
16Operationoperator: 19
operands: 20
17Literal
18ExprTuple21, 22
19Literal
20ExprTuple23, 24
21Variable
22Variable
23Variable
24Literal